Robotics System Toolbox™

Reference

<

MATLAB&SIMULINK

R2015a 2 } MathWorks:

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Robotics System Toolbox™ Reference

© COPYRIGHT 2015 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

Revision History
March 2015 Online only New for Version 1.0 (Release R2015a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Classes — Alphabetical List

1

Functions — Alphabetical List

2|

Methods — Alphabetical List

3

4

Blocks — Alphabetical List

iii

Classes — Alphabetical List

1 Classes — Alphabetical List

1-2

robotics.BinaryOccupancyGrid class

Package: robotics

Create occupancy grid with binary values

Description

BinaryOccupancyGrid creates a 2-D occupancy grid object, which you can use to
represent and visualize a robot workspace, including obstacles. The integration of sensor
data and position estimates create a spatial representation of the approximate locations
of the obstacles.

Occupancy grids are used in robotics algorithms such as path planning. They are also
used in mapping applications, such as for finding collision-free paths, performing
collision avoidance, and calculating localization. You can modify your occupancy grid to
fit your specific application.

Each cell in the occupancy grid has a value representing the occupancy status of that cell.
An occupied location is represented as true (1) and a free location is represented as
false (0).

The two coordinate systems supported are world and grid coordinates. The world
coordinates origin is defined by GridLocationlInWorld, which defines the bottom-left
corner of the map. The number and size of grid locations are defined by the Resolution.
Also, the first grid location with index (1,1) begins in the top-left corner of the grid.

Construction

map = robotics.BinaryOccupancyGrid(width,height) creates a 2-D binary
occupancy grid representing a work space of width and height in meters. The default grid
resolution is one cell per meter.

map = robotics.BinaryOccupancyGrid(width,height,resolution) creates a
grid with resolution specified in cells per meter. The map is in world coordinates by
default. You can use any of the arguments from previous syntaxes.

map = robotics.BinaryOccupancyGrid(rows,cols,resolution, "grid®)
creates a 2-D binary occupancy grid of size (rows,cols).

robotics.BinaryOccupancyGrid class

map = robotics.BinaryOccupancyGrid(p) creates a grid from the values in matrix
p- The size of the grid matches the size of the matrix, with each cell value interpreted
from its location in the matrix. p contains any numeric or logical type with zeros (0) and
ones (1).

map = robotics.BinaryOccupancyGrid(p,resolution) creates a
BinaryOccupancyGrid object with resolution specified in cells per meter.

Input Arguments

width — Map width

double in meters

Map width, specified as a double in meters.

Data Types: double

height — Map height

double in meters

Map width, specified as a double in meters.

Data Types: double

resolution — Grid resolution
1 (default) | double in cells per meter

Grid resolution, specified as a double in cells per meter.

Data Types: double

p — Input occupancy grid

matrix of ones and zeros

Input occupancy grid, specified as a matrix of ones and zeros. The size of the grid
matches the size of the matrix. Each matrix element corresponds to an occupied location
(1) or free location (0).

Properties

GridSize — Number of rows and columns in grid
two-element horizontal vector

1-3

1 Classes — Alphabetical List

1-4

Number of rows and columns in grid, stored as a two-element horizontal vector of the
form [rows cols]. This value is read only.

Resolution — Grid resolution
1 (default) | scalar in cells per meter

Grid resolution, stored as a scalar in cells per meter. This value is read only.

Data Types: double

XWorldLimits — Minimum and maximum values of x-coordinates
two-element vector

Minimum and maximum values of x-coordinates, stored as a two-element horizontal
vector of the form [min max]. These values indicate the world range of the x-coordinates
in the grid. This value is read only.

YWorldLimits — Minimum and maximum values of y-coordinates
two-element vector

Minimum and maximum values of y-coordinates, stored as a two-element vector of the
form [min max]. These values indicate the world range of the y-coordinates in the grid.
This value is read only.

GridLocationWorld — [x,y] world coordinates of grid
[0 0] (default) | two-element vector

[x,y] world coordinates of the bottom-left corner of the grid, specified as a two-element
vector.

Data Types: double
Methods

Examples

Create and Modify Binary Occupancy Grid

Create a 10m x 10m empty map.

robotics.BinaryOccupancyGrid class

map = robotics.BinaryOccupancyGrid(10,10,10);

Set occupancy of world locations and show map.

map = robotics.BinaryOccupancyGrid(10,10,10);
X = [1.2; 2.3; 3.4; 4.5; 5.6];

y = [6-0; 4.0; 3.0; 2.0; 1.0];
setOccupancy(map, [x yl, ones(5,1))

figure

show(map)

Inflate occupied locations by a given radius.
inflate(map, 0.5)

figure

show(map)

Get grid locations from world locations.

ij = world2grid(map, [x yD):

Set grid locations to free locations.
setOccupancy(map, ij, zeros(5,1), “grid")
figure

show(map)

. “Updating an Occupancy Grid From Range Sensor Data”

See Also

robotics.PRM | robotics.PurePursuit

More About

. “Occupancy Grids”

Introduced in R2015a

1-5

1 Classes — Alphabetical List

robotics.PRM class

Package: robotics

Create probabilistic roadmap path planner

Description

PRM creates a roadmap path planner object for the environment map specified in the
Map property. The object uses the map to generate a roadmap, which is a network graph
of possible paths in the map based on free and occupied spaces. You can customize the
number of nodes, NumNodes, and the connection distance, ConnectionDistance, to fit
the complexity of the map and find an obstacle-free path from a start to an end location.

After the map is defined, the PRM path planner generates the specified number of nodes
throughout the free spaces in the map. A connection between nodes is made when a line
between two nodes contains no obstacles and is within the specified connection distance.

After defining a start and end location, to find an obstacle-free path using this network
of connections, use the Findpath method. If fFindpath does not find a connected path,
it returns an empty array. By increasing the number of nodes or the connection distance,
you can improve the likelihood of finding a connected path, but tuning these properties
is necessary. To see the roadmap and the generated path , use the visualization options
in show. If you change any of the PRM properties, call update, show, or findpath to
recreate the roadmap.

Construction

planner = robotics.PRM creates an empty roadmap with default properties. Before
you can use the roadmap, you must specify a robotics.BinaryOccupancyGrid object
in the Map property.

planner = robotics.PRM(map) creates a roadmap with map set as the Map property,
where map is an object of the robotics.BinaryOccupancyGrid class.

planner = robotics.PRM(map,numnodes) sets the maximum number of nodes,
numnodes, to the NumNodes property.

robotics.PRM class

planner = robotics.PRM(___ ,Name,Value) provides additional options
specified by one or more Name, Value pair arguments. Name is the property

name and Value is the corresponding value. Name must appear inside single
quotes (" 7). You can specify several name-value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Input Arguments

map — Map representation
BinaryOccupancyGrid object

Map representation, specified as a robotics.BinaryOccupancyGrid object. This
object represents the environment of the robot. The object is a matrix grid with binary
values indicating obstacles as true (1) and free locations as false (0).

numnodes — Maximum number of nodes in roadmap
50 (default) | scalar

Maximum number of nodes in roadmap, specified as a scalar. By increasing this value,
the complexity and computation time for the path planner increases.

Properties

*ConnectionDistance” — Maximum distance between two connected nodes
inT (default) | scalar in meters

Maximum distance between two connected nodes, specified as the comma-separated pair
consisting of "ConnectionDistance” and a scalar in meters. This property controls
whether nodes are connected based on their distance apart. Nodes are connected only if
no obstacles are directly in the path. By decreasing this value, the number of connections
is lowered, but the complexity and computation time decreases as well.

"Map® — Map representation
BinaryOccupancyGrid object

Map representation, specified as the comma-separated pair consisting of 'Map' and a
robotics.BinaryOccupancyGrid object. This object represents the environment of the
robot. The object is a matrix grid with binary values indicating obstacles as true (1) and
free locations as False (0).

1 Classes — Alphabetical List

1-8

*NumNodes™ — Maximum distance between two connected nodes
inf (default) | scalar

Maximum distance between two connected nodes, specified as the comma-separated pair
consisting of "NumNodes " and a scalar. By increasing this value, the complexity and
computation time for the path planner increases.

Methods

See Also

robotics.BinaryOccupancyGrid | robotics.PurePursuit

Related Examples

. “Path Planning in Environments of Different Complexity”

Introduced in R2015a

robotics.PurePursuit class

robotics.PurePursuit class

Package: robotics

Create controller to follow set of waypoints

Description

PurePursuit creates a controller object used to make a differential drive robot follow
a set of waypoints. The object computes the linear and angular velocities for the

robot. Given the current pose of the robot, you can calculate these velocities using the
step method. Successive calls to step with updated poses provide updated velocity
commands for the robot to follow a path along a desired set of waypoints. Use the
MaxAngularVelocity and DesiredLinearVelocity properties to update the
velocities based on the robot’s performance.

The LookaheadDistanceproperty computes a look-ahead point on the path, which is a
local goal for the robot. The angular velocity command is computed based on this point.
Changing LookaheadDistance has a significant impact on the performance of the
algorithm. A higher look-ahead distance results in a smoother trajectory for the robot,
but can cause the robot to cut corners along the path. Too low of a look-ahead distance
can result in oscillations in tracking the path, causing unstable behavior. For more
information on the pure pursuit algorithm, see “Pure Pursuit Controller”.

Construction

controller = robotics.PurePursuit creates a pure pursuit object, controller, that
uses the pure pursuit algorithm to compute the linear and angular velocity inputs for a
differential drive robot.

controller = robotics.PurePursuit(Name, Value) creates a pure pursuit
object with additional options specified by one or more Name,Value pairs. Name is
the property name and Value is the corresponding value. Name must appear inside
single quotes (* 7). You can specify several name-value pair arguments in any order
as Namel,Valuel, . .. ,NameN,ValueN. Properties not specified retain their default
values.

1 Classes — Alphabetical List

1-10

Properties

"DesiredLinearVelocity" — Desired constant linear velocity
0.1 (default) | scalar in meters per second

Desired constant linear velocity, specified as the comma-separated pair consisting of
"DesiredLinearVelocity” and a scalar in meters per second. The controller assumes
that the robot drives at a constant linear velocity and that the computed angular velocity
is independent of the linear velocity.

Data Types: double

"LookaheadDistance” — Look-ahead distance
1.0 (default) | scalar in meters

Look-ahead distance, specified as the comma-separated pair consisting of
"LookaheadDistance” and a scalar in meters. The look-ahead distance changes the
response of the controller. A robot with higher look-ahead distance produces smooth
paths but takes larger turns at corners. A robot with smaller look-ahead distance follows
the path closely and takes sharp turns, but can produce oscillations in the path.

Data Types: double

"MaxAngularVelocity™ — Maximum angular velocity
1.0 (default) | scalar in radians per second

Maximum angular velocity, specified as the comma-separated pair consisting of
"MaxAngularVelocity" and a scalar in radians per second. The controller saturates
the absolute angular velocity output at the given value.

Data Types: double

"Waypoints® — Waypoints
[] (default) | n-by-2 array

Waypoints, specified as an n-by-2 array of [x y] pairs, where n is the number of
waypoints. You can generate the waypoints from the PRM class or from another source.

Data Types: double

robotics.PurePursuit class

Methods

See Also

robotics.BinaryOccupancyGrid | robotics.PRM

Related Examples
“Path Following for a Differential Drive Robot”

More About

“Pure Pursuit Controller”

Introduced in R2015a

1-11

Functions — Alphabetical List

2 Functions — Alphabetical List

2-2

angdiff

Difference between two angles

Syntax

delta = angdiff(alpha,beta)
delta = angdiff(alpha)
Description

delta = angdiff(alpha,beta) calculates the difference between the angles alpha
and beta. This function subtracts alpha from beta with the result wrapped on the
interval [-pi,pi]. You can specify the input angles as single values or as arrays of
angles that have the same number of values.

delta = angdiff(alpha) returns the angular difference between adjacent elements of
alpha along the first dimension whose size does not equal 1. The first entry is subtracted
from the second, the second from the third, etc. The output, delta, will be a matrix of size
m-1-by-n given that alpha is a m-by-n matrix and m is greater than 1 and n is greater
than zero.

Examples

Calculate Difference Between Two Angles

d = angdiff(pi,2*pi)
d =
3.1416

Calculate Difference Between Two Angle Arrays
d = angdiff([pi/2 3*pi/4 0],[pi pi/2 -pi])
d =

angdiff

1.5708 -0.7854 -3.1416

Calculate Angle Differences of Adjacent Elements

angles = [pi pi/2 pi/4 pi/2];
d = angdiff(angles)

d =

-1.5708 -0.7854 0.7854

Input Arguments

alpha — Angle in radians
scalar | vector | matrix | multidimensional array

Angle in radians, specified as a scalar, vector, matrix, or multidimensional array. This is
the angle that is subtracted from beta when specified.

Example: pi/2

beta — Angle in radians
scalar | vector | matrix | multidimensional array

Angle in radians, specified as a scalar, vector, matrix, or multidimensional array of the
same size as alpha. This is the angle that alpha is subtracted from when specified.

Example: pi/2

Output Arguments

delta — Difference between two angles
scalar | vector | matrix | multidimensional array

Angular difference between two angles, returned as a scalar, vector, or array. delta is
wrapped to the interval [-pi,pi].

See Also
deg2rad | rad2deg

2-3

2 Functions — Alphabetical List

Introduced in R2015a

2-4

apply

apply

Transform message entities into target frame

Syntax

tfentity = apply(tfmsg,entity)

Description

tfentity = apply(tfmsg,entity) applies the transformation represented by the
"TransformStamped®™ ROS message to the input message object entity.

This function determines the message type of entity and apples the appropriate
transformation method to it. If the object cannot handle a particular message type, then

MATLAB® displays an error message.

If you only want to use the most current transformation, call transform instead. If you
want to store a transformation message for later use, callgetTransform and then call

apply.

Examples

Apply Transformation to a Point

tfPoint = apply(transform,point);

Input Arguments

tfmsg — Transformation message
TransformStamped ROS message handle

Transformation message, specified as a TransformStamped ROS message handle. The
tfmsg is a ROS message of type: geometry_msgs/TransformStamped.

2-5

2 Functions — Alphabetical List

2-6

entity — ROS message
Message object handle

ROS message, specified as a Message object handle.
Supported messages are:

geometry_msgs/PointStamped
geometry_msgs/PoseStamped
geometry_msgs/PointCloud2Stamped
geometry_ msgs/QuaternionStamped
geometry_msgs/Vector3Stamped

Output Arguments

tfentity — Transformed ROS message
Message object handle

Transformed ROS message, returned as a Message object handle.

See Also

getTransform | transform

Introduced in R2015a

axang2quat

axang2quat

Convert axis-angle rotation to quaternion

Syntax

quat = axang2quat(axang)

Description

quat = axang2quat(axang) converts a rotation given in axis-angle form, axang, to
quaternion, quat.

Examples

Convert Axis-Angle Rotation to Quaternion

axang = [1 0 0 pi/2];
quat = axang2quat(axang)

guat =

0.7071 0.7071 0 0

Input Arguments

axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axis, and the last element
defines the rotation angle (in radians).

Example: [1 0 0 pi/2]

2-7

2 Functions — Alphabetical List

Output Arguments

quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form g = [w x y z], with w as the scalar number.

Example: [0.7071 0.7071 O O]

See Also

quat2axang

Introduced in R2015a

2-8

axang2rotm

axang2rotm

Convert axis-angle rotation to rotation matrix

Syntax

rotm = axang2rotm(axang)

Description

rotm = axang2rotm(axang) converts a rotation given in axis-angle form, axang, to an
orthonormal rotation matrix, rotm. When using the rotation matrix, premultiply it with
the coordinates to be rotated (as opposed to postmultiplying).

Examples

Convert Axis-Angle Rotation to Rotation Matrix

axang = [0 1 0 pi/2];
rotm = axang2rotm(axang)

rotm =
0.0000 0 1.0000
0 1.0000 0
-1.0000 0 0.0000
Input Arguments

axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axis, and the last element
defines the rotation angle (in radians).

2-9

2 Functions — Alphabetical List

Example: [1 O 0 pi/2]

Output Arguments

rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. When using the rotation matrix,
premultiply it with the coordinates to be rotated (as opposed to postmultiplying).

Example: [O O 1; O 1 0; -1 0 0]

See Also

rotm2axang

Introduced in R2015a

2-10

axang2tform

axang2iform

Convert axis-angle rotation to homogeneous transformation

Syntax

tform = axang2tform(axang)

Description

tform = axang2tform(axang) converts a rotation given in axis-angle form, axang,
to a homogeneous transformation matrix, tform. When using the transformation matrix,
premultiply it with the coordinates to be transformed (as opposed to postmultiplying).

Examples

Convert Axis-Angle Rotation to Homogeneous Transformation

axang = [1 0 0 pi/2];
tform = axang2tform(axang)
tform =
1.0000 0 0 0
0 0.0000 -1.0000 0]
0 1.0000 0.0000 0
0 0 0 1.0000

Input Arguments

axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axis, and the last element
defines the rotation angle (in radians).

2-11

2 Functions — Alphabetical List

Example: [1 O 0 pi/2]

Output Arguments

tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. When using the transformation matrix, premultiply it with the
coordinates to be formed (as opposed to postmultiplying).

Example: [0 0 1 0; 01 00; -1 000; 000 1]

See Also

tform2axang

Introduced in R2015a

2-12

call

call

Call the ROS service server and receive a response

Syntax

response = call(serviceclient)

response = call(serviceclient,requestmsg)
response = call(___ ,Name,Value)
Description

response = call(serviceclient) sends a default service request message and
waits for a service response. The default service request message is an empty message
of type serviceclient.ServiceType.

response = call(serviceclient,requestmsg) specifies a service request message,
requestmsg, to be sent to the service.

response = call(___ ,Name,Value) provides additional options specified by one
or more Name, Value pair arguments, using any of the arguments from the previous
syntaxes. Name must appear inside single quotes (" *). You can specify several name-
value pair arguments in any order as Namel,Valuel, . .. ,NameN,ValueN.

Examples

Create Service Client and Call for Response Using Default Message

client = rossvcclient("/gazebo/get _model state™);
response = call(client);

Call for Response Using Specific Request Message

regmessage = rosmessage(client);

2-13

2 Functions — Alphabetical List

2-14

response = call(client,regmessage);
Wait for Response Using Timeout of Five Seconds

response = call(client,regmessage, "TimeOut”",5);

Input Arguments

serviceclient — Service client
ServiceClient object handle

Service client, specified as a ServiceClient object handle.

requestmsg — Request message
Message object handle

Request message, specified as a Message object handle. The default message type is
serviceclient.ServiceType.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "TimeOut” ,5

"TimeOut" — Timeout for service response in seconds
inf (default) | scalar

Timeout for service response in seconds, specified as a comma-separated pair consisting
of "Timeout" and a scalar. If the service client does not receive a service response and
the timeout period elapses, cal l displays an error message and lets MATLAB continue
running the current program. The default value of inf blocks MATLAB from running
the current program until the service client receives a service response.

Output Arguments

response — Response message
Message object handle

call

IIResponse message sent by the service server, returned as a Message object handle.

See Also

rossvcclient

Introduced in R2015a

2-15

2 Functions — Alphabetical List

cart2hom

Convert Cartesian coordinates to homogeneous coordinates

Syntax

hom = cart2hom(cart)

Description

hom = cart2hom(cart) converts a set of points in Cartesian coordinates to
homogeneous coordinates.

Examples

Convert 3-D Cartesian Points to Homogeneous Coordinates

c = [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975];
h = cart2hom(c)
h =
0.8147 0.1270 0.6324 1.0000
0.9058 0.9134 0.0975 1.0000
Input Arguments

cart — Cartesian coordinates
n-by-(k—1) matrix

Cartesian coordinates, specified as an n-by-(k—1) matrix, containing n points. Each row of
cart represents a point in (k—1)-dimensional space. k£ must be greater than or equal to 2.

Example: [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975]

2-16

cart2hom

Output Arguments

hom — Homogeneous points
n-by-k matrix

Homogeneous points, returned as an n-by-k matrix, containing n points. £ must be
greater than or equal to 2.

Example: [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5]

See Also

hom2cart

Introduced in R2015a

2-17

2 Functions — Alphabetical List

definition

Retrieve definition of ROS message type

Syntax

def = definition(mnsg)

Description

def = definition(msg) returns the ROS definition of the message type associated
with the message object, msg. The details of the message definition include the structure,
property data types, and comments from the authors of that specific message.

Examples

Access ROS Message Definition for Message

Create a Point Message.

point = rosmessage("geometry_msgs/Point™);

Access the definition.

def = definition(point)

def =

% This contains the position of a point in free space
double X

double Y
double Z

Input Arguments

msg — ROS message
Message object handle

2-18

definition

ROS message, specified as a Message object handle. This message can be created using
the rosmessage function.

Output Arguments

def — Details of message definition
string

Details of the information inside the ROS message definition, returned as a string.

See Also

rosmessage | rosmsg

Introduced in R2015a

2-19

2 Functions — Alphabetical List

2-20

deg2rad

Convert angles from degrees to radians

Syntax

anglelnRadians = deg2rad(anglelnDegrees)

Description

anglelnRadians = deg2rad(anglelnDegrees) converts angle units from degrees
to radians for each element of angleInDegrees. This is both an angle conversion function
and a distance conversion function, since arc length can be a measure of distance in
either radians or degrees, provided that the radius is known.

Examples

Compute tangent of 45-degree angle
tan(deg2rad(45))
ans =

1.0000

Input Arguments

anglelnDegrees — Angles in degrees
numeric scalar or array

Angles in degrees, specified as a numeric scalar or array. In the case of complex input,
deg2rad converts the real and imaginary parts separately.
Example: cos(deg2rad(45))

Data Types: single | double

deg2rad

Complex Number Support: Yes

Output Arguments

anglelnRadians — Angle in radians
numeric scalar or vector

Angle in radians, returned as a numeric scalar or array, the same size and class as the
input value.

See Also
rad2deg

2-21

2 Functions — Alphabetical List

del

Delete a ROS parameter

Syntax

del (ptree,paramname)

Description

del(ptree,paramname) deletes a parameter with name paramname from the
parameter tree, ptree. The parameter is also deleted from the ROS parameter server. If
the specified paramname does not exist, the function displays an error.

Examples

Delete Parameter on ROS Master

Create parameter tree, MyParam' parameter, and check existence.
ptree = rosparam;
set(ptree, "MyParam®, "test")
has(ptree, "MyParam®)
ans =
1

Delete parameter and check existence.

del(ptree, "MyParam®)
has(ptree, "MyParam®)

ans =

2-22

del

Input Arguments

ptree — Parameter tree
ParameterTree object handle

Parameter tree, specified as a ParameterTree object handle. Create this object using
the rosparam function.

paramname — ROS parameter name
string

ROS parameter name, specified as a string. This string must match the parameter name
exactly.

See Also

has | rosparam | set

Introduced in R2015a

2-23

2 Functions — Alphabetical List

2-24

eul2quat

Convert Euler angles to quaternion

Syntax
quat = eul2quat(eul)
quat = eul2quat(eul,sequence)

Description

quat = eul2quat(eul) converts a given set of Euler angles, eul, to the corresponding
quaternion, quat. The default order for Euler angle rotations is "ZYX".

quat = eul2quat(eul,sequence) converts a set of Euler angles into a quaternion.
The Euler angles are specified in the axis rotation sequence, sequence. The default order
for Euler angle rotations is "ZYX".

Examples

Convert Euler Angles to Quaternion

eul = [0 pi/2 0];
gZYX = eul2quat(eul)

qzyYX =
0.7071 0 0.7071 0

Convert Euler Angles to Quaternion Using Default ZYZ Axis Order

eul = [pi/2 0 0];
qzZYZ = eul2quat(eul,"zYZ")

qzYzZ =

eul2quat

0.7071 0 0 0.7071

Input Arguments

eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.

Example: [0 O 1.5708]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ"

Axis rotation sequence for the Euler angles, specified as one of these strings:

+ "ZYX" (default) — The order of rotation angles is z-axis, y-axis, x-axis.

* "ZYZ" — The order of rotation angles is z-axis, y-axis, z-axis.

Output Arguments

quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form g = [w x y z], with w as the scalar number.

Example: [0.7071 0.7071 0 O]

See Also

quat2eul

Introduced in R2015a

2-25

2 Functions — Alphabetical List

eul2rotm

Convert Euler angles to rotation matrix

Syntax

rotm = eul2rotm(eul)
rotm eul2rotm(eul,sequence)

Description

rotm = eul2rotm(eul) converts a set of Euler angles, eul, to the corresponding
rotation matrix, rotm. When using the rotation matrix, premultiply it with the
coordinates to be rotated (as opposed to postmultiplying). The default order for Euler
angle rotations is "ZYX".

rotm = eul2rotm(eul,sequence) converts Euler angles to a rotation matrix, rotm.
The Euler angles are specified in the axis rotation sequence, sequence. The default order
for Euler angle rotations is "ZYX".

Examples

Convert Euler Angles to Rotation Matrix

eul = [0 pi/2 0];
rotmzYX = eul2rotm(eul)

rotmzyYx =
0.0000 0 1.0000
0 1.0000 0
-1.0000 0 0.0000

Convert Euler Angles to Rotation Matrix Using ZYZ Axis Order

eul = [0 pi/2 pi/2];
rotmzYZ = eul2rotm(eul,"2ZYZ")

2-26

eul2rotm

rotmzYZ =
0.0000 -0.0000 1.0000

1.0000 0.0000 0
-0.0000 1.0000 0.0000

Input Arguments

eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.

Example: [0 O 1.5708]

sequence — Axis rotation sequence
"ZYX" (default) | "zYZ*

Axis rotation sequence for the Euler angles, specified as one of these strings:

+ "ZYX" (default) — The order of rotation angles is z-axis, y-axis, x-axis.

* "ZYZ" — The order of rotation angles is z-axis, y-axis, z-axis.

Output Arguments

rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. When using the rotation matrix,
premultiply it with the coordinates to be rotated (as opposed to postmultiplying).

Example: [0 O 1; 0 1 0; -1 0 0]

See Also

rotm2eul

Introduced in R2015a

2-27

2 Functions — Alphabetical List

2-28

eul2tform

Convert Euler angles to homogeneous transformation

Syntax

eul = eul2tform(eul)
tform = eul2tform(eul,sequence)

Description

eul = eul2tform(eul) converts a set of Euler angles, eul, into a homogeneous
transformation matrix, tform. When using the transformation matrix, premultiply it with
the coordinates to be transformed (as opposed to postmultiplying). The default order for
Euler angle rotations is "ZYX".

tform = eul2tform(eul,sequence) converts Euler angles to a homogeneous
transformation. The Euler angles are specified in the axis rotation sequence, sequence.
The default order for Euler angle rotations is "ZYX".

Examples

Convert Euler Angles to Homogeneous Transformation Matrix

eul = [0 pi/2 0];
tformzYX = eul2tform(eul)

tformzyYX =
0.0000 0 1.0000 0
0 1.0000 0 0
-1.0000 0 0.0000 0
0 0 0 1.0000

Convert Euler Angles to Homogeneous Transformation Matrix Using ZYZ Axis Order

eul = [0 pi/2 pi/2];

eul2tform

tformzYz = eul2tform(eul,"2ZYZ")

tformzYzZ =
0.0000 -0.0000 1.0000 0
1.0000 0.0000 0 0
-0.0000 1.0000 0.0000 0
0 0 0 1.0000
Input Arguments

eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.

Example: [0 0 1.5708]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ*

Axis rotation sequence for the Euler angles, specified as one of these strings:

+ "ZYX" (default) — The order of rotation angles is z-axis, y-axis, x-axis.

* "ZYZ" — The order of rotation angles is z-axis, y-axis, z-axis.

Output Arguments

tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to
be rotated (as opposed to postmultiplying).

Example: [O 0 1 0; 01 00; -1 000; 000 1]

See Also

tform2eul

2-29

2 Functions — Alphabetical List

Introduced in R2015a

2-30

get

get

Get ROS parameter value

Syntax

pvalue = get(ptree,paramname)

Description

pvalue = get(ptree,paramname) gets the value of the parameter with the name
paramname from the parameter tree object ptree.

Examples
Set and Get Parameter Value

Create the parameter tree.

ptree = rosparam;

Set the parameter value.

set(ptree, "DoubleParam®,1.0)

Get the parameter value.
get(ptree, "DoubleParam™)

ans =

Input Arguments

ptree — Parameter tree
ParameterTree object handle

2-31

2 Functions — Alphabetical List

2-32

Parameter tree, specified as a ParameterTree object handle. Create this object using
the rosparam function.

paramname — ROS parameter name
string

ROS parameter name, specified as a string. This string must match the parameter name
exactly.

Output Arguments

pvalue — Parameter value
int32 | logical | char | double | cell array

Parameter value, returned as either a int32, logical, double, char, or cell array.
pvalue matches the value of the specifiedparamname and the supported data type in
ParameterTree. Currently, Base64—encoded binary data and is08601 data from ROS
are not supported.

See Also

rosparam | set

Introduced in R2015a

gefTransform

getTransform

Retrieve the transformation between two coordinate frames

Syntax

tf = getTransform(tftree, targetframe, sourceframe)

Description

tf = getTransform(tftree, targetframe, sourceframe) returns the latest known
transformation between two coordinate frames. Transformations are structured as a 3-D
translation (3-element vector) and a 3-D rotation (quaternion).

Examples

Get Transformation

tf = gettransform(tftree, "/camera_depth_frame®,"/base link");

Input Arguments

tftree — ROS transformation tree
TransformationTree object handle

ROS transformation tree, specified as a TransformationTree object handle. You can
create a transformation tree by calling the rostf function.

targetframe — Target coordinate frame
string

Target coordinate frame, specified as a string. You can view the available frames for
transformation by calling tftree.AvailableFrames.

sourceframe — Initial coordinate frame
string

2-33

2 Functions — Alphabetical List

Initial coordinate frame, specified as a string. You can view the available frames for
transformation by calling tFtree.AvailableFrames.

Output Arguments

tf — Transformation between coordinate frames
TransformStamped object handle

Transformation between coordinate frames, returned as a TransformStamped object
handle. Transformations are structured as a 3-D translation (3-element vector) and a 3-D
rotation (quaternion).

See Also

transform | waitforTransform

Introduced in R2015a

2-34

has

has

Check if ROS parameter name exists

Syntax

exists = has(ptree,paramname)

Description

exists = has(ptree,paramname) checks if the parameter with name paramname
exists in the parameter tree, ptree.

Examples

Check If ROS Parameter Exists

Create a parameter tree and check for the 'MyParam' parameter.
ptree = rosparam;
has(ptree, "MyParam®)
ans =
0
Create a ‘MyParam’ parameter and verify that it exists.
set(ptree, "MyParam®, "test")
has(ptree, "MyParam®)

ans =

2-35

2 Functions — Alphabetical List

Input Arguments

ptree — Parameter tree
ParameterTree object handle

Parameter tree, specified as a ParameterTree object handle. Create this object using
the rosparam function.

paramname — ROS parameter name
string

ROS parameter name, specified as a string. This string must match the parameter name
exactly.

Output Arguments

exists — Flag indicating whether the parameter exists
true | false

Flag indicating whether the parameter exists, returned as true or false.

See Also

get | rosparam | search | set

Introduced in R2015a

2-36

hom2cart

hom2cart

Convert homogeneous coordinates to Cartesian coordinates

Syntax

cart = hom2cart(hom)

Description

cart = hom2cart(hom) converts a set of homogeneous points to Cartesian coordinates.

Examples

Convert Homogeneous Points to 3-D Cartesian Points

h = [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5];
¢ = hom2cart(h)
CcC =
0.5570 1.9150 0.3152
1.0938 1.9298 1.9412
Input Arguments

hom — Homogeneous points
n-by-k matrix

Homogeneous points, specified as an n-by-k matrix, containing n points. £ must be
greater than or equal to 2.

Example: [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5]

2-37

2 Functions — Alphabetical List

Output Arguments

cart — Cartesian coordinates
n-by-(k—1) matrix

Cartesian coordinates, returned as an n-by-(k—1) matrix, containing n points. Each row of
cart represents a point in (k—1)-dimensional space. k must be greater than or equal to 2.

Example: [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975]

See Also

cart2hom

Introduced in R2015a

2-38

p|ot

plot

Display ROS laser scan messages on custom plot

Syntax

plot(scan)
plot(scan,Name,Value)
linehandle = plot(__)

Description

plot(scan) creates a line plot of the laser scan in xy-coordinates that is based on the
input LaserScan object message. Axes are automatically scaled to the maximum range
that the laser scanner supports.

plot(scan,Name,Value) provides additional options specified by one or
more Name, Value pair arguments. Name must appear inside single quotes
(" "). You can specify several name-value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

linehandle = plot() returns a column vector of line series handles, using any
of the arguments from previous syntaxes. Use linehandle to modify properties of the line
series after it is created.

When plotting ROS laser scan messages, MATLAB follows the standard ROS convention

for axis orientation. This convention states that positive x is forward, positive y is
left, and positive z is up. For more information, see Axis Orientation on the ROS Wiki.

2-39

http://www.ros.org/reps/rep-0103.html#axis-orientation

2 Functions — Alphabetical List

2-40

Examples

Plot Laser Scan

plot(scan);

Plot Laser Scan with Maximum Range Specified
plot(scan, "MaximumRange®,10);

Save Line Handle for Laser Scan Plot

linehandle = plot(scan);

Input Arguments

scan — Laser scan message
LaserScan object handle

"sensor_msgs/LaserScan® ROS message, specified as a LaserScan object handle.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "MaximumRange® ,5

"Parent” — Parent of axes
axes object

Parent of axes, specified as the comma-separated pair consisting of "Parent” and an
axes object in which the laser scan is drawn. By default, the laser scan is plotted in the
currently active axes.

"MaximumRange" — Range of laser scan
scan.RangeMax (default) | scalar

Range of laser scan, specified as the comma-sepearated pair consisting of
"MaximumRange"® and a scalar. When you specify this name-value pair argument, the

p|ot

minimum and maximum x-axis limits and the maximum y-axis limit are set based on
specified value. The minimum y-axis limit is automatically determined by the opening
angle of the laser scanner.

Outputs

linehandle — One or more chart line objects
scalar | vector

One or more chart line objects, returned as a scalar or a vector. These are unique
identifiers, which you can use to query and modify properties of a specific chart line.

See Also

readCartesian

Introduced in R2015a

2-41

2 Functions — Alphabetical List

quat2axang

Convert quaternion to axis-angle rotation

Syntax

axang = quat2axang(quat)

Description

axang = quat2axang(quat) converts a quaternion, quat, to the equivalent axis-angle
rotation, axang.

Examples

Convert Quaternion to Axis-Angle Rotation

quat = [0.7071 0.7071 O O];
axang = quat2axang(quat)

axang =
1.0000 0 0 1.5708
Input Arguments

quat — Unit quaternion
n-by-4 matrix

Unit quaternion, specified as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form g = [w x y z], with w as the scalar number.

Example: [0.7071 0.7071 0 O]

2-42

quat2axang

Output Arguments

axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, returned as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axis, and the last element
defines the rotation angle (in radians).

Example: [1 0 0 pi/2]

See Also

axang2quat

Introduced in R2015a

2-43

2 Functions — Alphabetical List

quat2eul

Convert quaternion to Euler angles

Syntax
eul = quat2eul(quat)
eul = quat2eul(quat,sequence)

Description

eul = gquat2eul (quat) converts a quaternion rotation, quat, to the corresponding
Euler angles, eul. The default order for Euler angle rotations is "ZYX".

eul = quat2eul (quat,sequence) converts a quaternion into Euler angles. The Euler
angles are specified in the axis rotation sequence, sequence. The default order for Euler
angle rotations is "ZYX".

Examples

Convert Quaternion to Euler Angles

quat = [0.7071 0.7071 O 0];
eulzYX = quat2eul(quat)

eulzYX =

0 0 1.5708

Convert Euler Angles to Quaternion Using ZYZ Axis Order

quat = [0.7071 0.7071 O 0O];
eulzYzZ = quat2eul(quat, "ZYZ")

eulzyz =

2-44

quat2eul

-1.5708 1.5708 1.5708

Input Arguments

quat — Unit quaternion
n-by-4 matrix

Unit quaternion, specified as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form g = [w x y z], with w as the scalar number.

Example: [0.7071 0.7071 0 O]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ"

Axis rotation sequence for the Euler angles, specified as one of these strings:

+ "ZYX" (default) — The order of rotation angles is z-axis, y-axis, x-axis.

* "ZYZ" — The order of rotation angles is z-axis, y-axis, z-axis.

Output Arguments

eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.

Example: [0 O 1.5708]

See Also

eul2quat

Introduced in R2015a

2-45

2 Functions — Alphabetical List

quat2rotm

Convert quaternion to rotation matrix

Syntax

rotm = quat2rotm(quat)

Description

rotm = quat2rotm(quat) converts a quaternion quat to an orthonormal rotation
matrix, rotm. When using the rotation matrix, premultiply it with the coordinates to be
rotated (as opposed to postmultiplying).

Examples

Convert Quaternion to Rotation Matrix

quat = [0.7071 0.7071 O 0O];
rotm = quat2rotm(quat)
rotm =
1.0000 0 0
0O -0.0000 -1.0000
0 1.0000 -0.0000
Input Arguments

quat — Unit quaternion
n-by-4 matrix

Unit quaternion, specified as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form g = [w x y z], with w as the scalar number.

Example: [0.7071 0.7071 O O]

2-46

quat2rotm

Output Arguments

rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. When using the rotation matrix,
premultiply it with the coordinates to be rotated (as opposed to postmultiplying).

Example: [O O 1; 0 1 0; -1 0 0]

See Also
rotm2quat

Introduced in R2015a

2-47

2 Functions — Alphabetical List

quat2tform

Convert quaternion to homogeneous transformation

Syntax

tform = quat2tform(quat)

Description

tform = quat2tform(quat) converts a quaternion, quat, to a homogeneous
transformation matrix, tform. When using the transformation matrix, premultiply it with
the coordinates to be transformed (as opposed to postmultiplying).

Examples

Convert Quaternion to Homogeneous Transformation

quat = [0.7071 0.7071 O 0];
tform = quat2tform(quat)

tform =
1.0000 0 0 0
0 -0.0000 -1.0000 0
0 1.0000 -0.0000 0
0 0 0 1.0000

Input Arguments

quat — Unit quaternion
n-by-4 matrix

Unit quaternion, specified as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form g = [w x y z], with w as the scalar number.

Example: [0.7071 0.7071 0 O]

2-48

quat2tform

Output Arguments

tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, returned as a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to
be rotated (as opposed to postmultiplying).

Example: [O 0 1 0; 01 00; -1 000; 000 1]

See Also
tform2quat

Introduced in R2015a

2-49

2 Functions — Alphabetical List

2-50

rad2deg

Convert angles from radians to degrees

Syntax

anglelnDegrees rad2deg(anglelnRadians)

Description

anglelnDegrees rad2deg(anglelnRadians) converts angle units from radians
to degrees for each element of angleInRadians. This is both an angle conversion function
and a distance conversion function, because arc length can be a measure of distance in
either radians or degrees, provided that the radius is known.

Examples

Convert great-circle distance to a spherical distance in degrees.

Specify the mean radius of Earth in kilometers.
Re = 6371;

Calculate the spherical distance in degrees.

sphericalDistance = rad2deg(2500 / Re)

sphericalDistance =

22.4830

Input Arguments

anglelnRadians — Angles in radians
numeric scalar or array

rad2deg

Angles in radians, specified as a numeric scalar or array. In the case of complex input,
rad2deg converts the real and imaginary parts separately.

Example: rad2deg(45)

Data Types: single | double
Complex Number Support: Yes

Output Arguments

anglelnDegrees — Angle in degrees
numeric scalar or array

Angle in degrees, returned as a numeric scalar or array, the same size and class as the
input value.

See Also
deg2rad

2-51

2 Functions — Alphabetical List

2-52

readAllFieldNames

Get all available field names from ROS point cloud

Syntax

Ffieldnames = readAllFieldNames(pcloud)

Description

fieldnames = readAllFieldNames(pcloud) gets the names of all point fields that
are stored in the PointCloud2 object message, pcloud, and returns them in fieldnames.

Examples

Read All Fields from Point Cloud Message

fieldnames = readAllFieldNames(pcloud);

Input Arguments

pcloud — Point cloud
PointCloud2 object handle

Point cloud, specified as a PointCloud2 object handle for a "sensor_msgs/
PointCloud2® ROS message.

Output Arguments

fieldnames — List of field names in PointCloud2 object
cell array of strings

List of field names in PointCloud2 object, returned as a cell array of strings. If no fields
exist in the object, Fieldname returns an empty cell array.

readAllFieldNames

See Also

readField

Introduced in R2015a

2-53

2 Functions — Alphabetical List

2-54

readBinaryOccupancyGrid

Read binary occupancy grid

Syntax

map
map
map

readBinaryOccupancyGrid(msg)
readBinaryOccupancyGrid(msg, thresh)
readBinaryOccupancyGrid(msg, thresh,val)

Description

map = readBinaryOccupancyGrid(msg) returns a
robotics.BinaryOccupancyGrid object by reading the data inside a ROS message,
msg, which must be a "nav_msgs/0OccupancyGrid® message. All message data values
greater than or equal to the occupancy threshold are set to occupied, 1, in the map. All
other values, including unknown values (-1) are set to unoccupied, O, in the map.

map = readBinaryOccupancyGrid(msg, thresh) specifies a threshold, thresh, for
occupied values. All values greater than or equal to the threshold are set to occupied, 1.
All other values are set to unoccupied, O.

map = readBinaryOccupancyGrid(msg,thresh,val) specifies a value to set for
unknown values (-1). By default, all unknown values are set to unoccupied, O.

Examples

Read Data from Message

Create a occupancy grid message and populate it with data.

msg = rosmessage("nav_msgs/OccupancyGrid®);
msg. Info_Height = 10;

msg. Info_Width = 10;

msg. Info_Resolution = 0.1;

msg.Data = 100*rand(100,1);

readBinaryOccupancyGrid

Read data from message

map = readBinaryOccupancyGrid(msg);

Read Message Data with Threshold

Threshold for occupied values is set to 65 and greater.

map = readBinaryOccupancyGrid(msg,65);

Read Message Data with Threshold and Unknown Value Replacement

map = readBinaryOccupancyGrid(msg,65,1);

Input Arguments

msg — "nav_msgs/OccupancyGrid® ROS message
OccupancyGrid object handle

"nav_msgs/OccupancyGrid®” ROS message, specified as a OccupancyGrid object
handle.

thresh — Threshold for occupied values
50 (default) | scalar

Threshold for occupied values, specified as a scalar. Any value greater than or equal to
the threshold is set to occupied, 1. All other values are set to unoccupied, O.

Data Types: double

val — Value to replace unknown values
0 (default) | 1

Value to replace unknown values, specified as either O or 1. Unknown message values
(-1) are set to the given value.

Data Types: double | logical

Output Arguments

map — Binary occupancy grid
BinaryOccupancyGrid object handle

2-55

2 Functions — Alphabetical List

Binary occupancy grid, returned as a BinaryOccupancyGrid object handle. map is
converted from a "nav_msgs/OccupancyGrid® message on the ROS network. It is
an object with a grid of binary values, where 1 indicates an occupied location and O
indications an unoccupied location.

See Also

robotics.BinaryOccupancyGrid | writeBinaryOccupancyGrid

Introduced in R2015a

2-56

readCartesian

readCartesian

Read laser scan ranges in Cartesian coordinates

Syntax

cart readCartesian(scan)
cart = readCartesian(,Name,Value)
[angles,cart] = readCartesian()

Description

cart = readCartesian(scan) converts the polar measurements of the laser scan
object, scan, into Cartesian coordinates, cart. This function uses the metadata in the
message, such as angular resolution and opening angle of the laser scanner, to perform
the conversion. Invalid range readings, usually represented as NaN, are ignored in this
conversion.

cart = readCartesian(___ ,Name,Value) provides additional options specified
by one or more Name, Value pair arguments. Name must appear inside single
quotes (" ™). You can specify several name-value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

[angles,cart] = readCartesian(___) returns the scan angles, angles that are
associated with each Cartesian coordinate. Angles are measured counter-clockerwise
around the positive z-axis, with the zero angle along the x-axis. angles is returned in
radians and wrapped to the [—pi, pi] interval.

2-57

2 Functions — Alphabetical List

2-58

Examples
Read Laser Scan and Convert to Cartesian Coordinates
cart = readCartesian(scan);

Read Laser Scan and Specify Scan Range

cart = readCartesian(scan, "RangeLimit",[0 10]);

Input Arguments

scan — Laser scan message
LaserScan object handle

"sensor_msgs/LaserScan® ROS message, specified as a LaserScan object handle.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "RangeLimits®,[-2 2]

"RangeLimits” — Minimum and maximum range for scan in meters
[scan.RangeMin scan.RangeMax] (default) | 2-element [min max] vector

Minimum and maximum range for scan in meters, specified as a 2-element [min max]
vector. All ranges smaller than min or larger than max are ignored during the conversion
to Cartesian coordinates.

Output Arguments

cart — Cartesian coordinates of laser scan
n—by—2 matrix in meters

Cortesian coordinates of laser scan, returned as an n-by-2 matrix in meters.

readCartesian

angles — Scan angles for laser scan data
n—by—1 matrix in radians

Scan angles for laser scan data, returned as an n-by-1 matrix in radians. Angles are

measured counter-clockerwise around the positive z-axis, with the zero angle along the x-
axis. angles is returned in radians and wrapped to the [—pi, pi] interval.

See Also

plot | readScanAngles

Introduced in R2015a

2-59

2 Functions — Alphabetical List

2-60

readField

Read point cloud data based on field name

Syntax

fielddata = readField(pcloud,fieldname)

Description
fielddata = readField(pcloud, fieldname) reads the point field from the point

cloud, pcloud, specified by fieldname and returns it in fielddata. If fieldname does not
exist, the function displays an error.

Examples

Read x Coordinates for All Points

x = readField(pcloud, "x");

Input Arguments

pcloud — Point cloud
PointCloud2 object handle

Point cloud, specified as a PointCloud2 object handle for a "sensor_msgs/
PointCloud2® ROS message.

fieldname — Field name of point cloud data
string

Field name of point cloud data, specified as a string. This string must match the field
name exactly. If fieldname does not exist, the function displays an error.

readField

Output Arguments

fielddata — List of field values from point cloud
matrix

List of field values from point cloud, returned as a matrix. Each row of is a point cloud
reading, where n is the number of points and ¢ is the number of values for each point.
If the point cloud object being read has the PreserveStructureOnRead property set
to true, the points are returned as an h-by-w-by-c matrix. For more information, see
“Preserving Point Cloud Structure” on page 2-61.

More About

Tips

Point cloud data can be organized in either 1-D lists or in 2-D image styles. 2-D image
styles usually come from depth sensors or stereo cameras. The input PointCloud2
object contains a PreserveStructureOnRead property that is either true or False
(default). Suppose you set the property to true.

pcloud.PreserveStructureOnRead = true;

Now calling any read functions (readXYZ,readRGB, or readField) preserves the
organizational structure of the point cloud. When you preserve the structure, the output
matrices are of size m-by-n-by-d, where m is the height, n is the width, and d is the
number of return values for each point. Otherwise, all points are returned as a x-by-d
list. This structure can only be preserved if the point cloud is organized.

See Also

readAl IFieldNames

Introduced in R2015a

2-61

2 Functions — Alphabetical List

2-62

readimage

Convert ROS image data into MATLAB image

Syntax

img = readlmage(msg)
[img,alpha] = readlmage(msg)

Description

img = readlmage(msg) converts the raw image data in the message object, msg, into
an image matrix, img. You can call readImage using either "sensor_msgs/Image” or
"sensor_msgs/CompressedlImage” messages.

ROS image message data is stored in a format that is not compatible with further image
processing in MATLAB. Based on the specified encoding, this function converts the data
into an appropriate MATLAB image and returns it in img.

[img,alpha] = readlmage(msg) returns the alpha channel of the image in alpha. If
the image does not have an alpha channel, then alpha is empty.

Examples

Read ROS Image Data
[img,alpha] = readlmage(obj);

Input Arguments

msg — ROS image message
Image object handle | CompressedImage object handle

"sensor_msgs/Image” or "sensor_msgs/CompressedImage” ROS image message,
specified as an Image or Compressed Image object handle.

readimage

Output Arguments

img — Image
grayscale image matrix | RBG image matrix | m-by-n-by-3 array

Image, returned as a matrix representing a grayscale or RGB image or as am-by-n-by-3
array, depending on the sensor image.

alpha — Alpha channel
uint8 grayscale image

Alpha channel, returned as a uint8 grayscale image. If no alpha channel exists, alpha is
empty.

More About
Tips

ROS image messages can have different encodings. The encodings supported for images
are different for "sensor_msgs/Image” and "sensor_msgs/Compressedlimage”
message types. Less compressed images are supported. The following encodings for raw
images of size MxN are supported using the "sensor_msgs/Image” message type
("sensor_msgs/CompressedlImage” support is in bold):

*+ rgb8, rgha8, bgr8, bgra8: imgis an rgb image of size MxNx3. The alpha
channel is returned in alpha. Each value in the outputs is represented as a uint8.

*+ rgbl6, rgbal6, bgrl6, bgral6: imgis an RGB image of size MxNx3. The alpha
channel is returned in alpha. Each value in the outputs is represented as a uintl16.

* mono8 images are returned as grayscale images of size MxNx1. Each pixel value is
represented as a uint8.

* monol6 images are returned as grayscale images of size MxNx1. Each pixel value is
represented as a uintle6.

+ 32fcX images are returned as floating-point images of size MxNxD, where D is 1, 2, 3,
or 4. Each pixel value is represented as a single.

+ 64fcX images are returned as floating-point images of size MxNxD, where D is 1, 2, 3,
or 4. Each pixel value is represented as a double.

+ 8ucXimages are returned as matrices of size MxNxD, where D is 1, 2, 3, or 4. Each
pixel value is represented as a uints8.

2-63

2 Functions — Alphabetical List

2-64

+ 8scX images are returned as matrices of size MxNxD, where D is 1, 2, 3, or 4. Each
pixel value is represented as a Int8.

+ 16ucX images are returned as matrices of size MxINxD, where Dis 1, 2, 3, or 4. Each
pixel value is represented as a intl6.

+ 16scX images are returned as matrices of size MxINxD, where Dis 1, 2, 3, or 4. Each
pixel value is represented as a intl6.

+ 32scX images are returned as matrices of size MxINxD, where D is 1, 2, 3, or 4. Each
pixel value is represented as a int32.

* bayer_Ximages are returned as either Bayer matrices of size MxNx1, or as a
converted image of size MxNx3 (Image Processing Toolbox™ is required).

The following encoding for raw images of size MxN is supported using the
"sensor_msgs/CompressedImage” message type

* rgb8, rgha8, bgr8, bgra8: imgis an rgb image of size MxNx3. The alpha
channel is returned in alpha. Each output value is represented as a uints8.

See Also

writelmage

Introduced in R2015a

readMessages

readMessages

Read messages from rosbag

Syntax
msgs = readMessages(bag)
msgs = readMessages(bag, rows)

Description

msgs = readMessages(bag) returns data from all of the messages in the
BagSelection object, bag. The messages are returned in a cell array of messages.

msgs = readMessages(bag, rows) returns data from messages in the rows specified
by rows. The maximum range of the rows is [1,bag.NumMessages].

Examples
Return All Messages as a Cell Array
allMsgs = readMessages(bagMsgs);

Return First Ten Messages

firstMsgs = readMessages(bagMsgs,1:10);

Input Arguments

bag — Message of a rosbag
BagSelection object

All the messages contained within a rosbag, specified as a BagSe lection object.

rows — Rows of BagSelection object
n-by-2 matrix

2-65

2 Functions — Alphabetical List

Rows of BagSelection object, specified as an n-by-2 matrix, where n is the
number of rows to retrieve messages from. The maximum range of the rows is [1,
bag-NumMessage].

Output Arguments

msgs — ROS message object handle
handle | cell array

ROS message object handle, returned as a handle or cell array. ROS messages are
retrieved from the BagSelection object.

See Also

rosbag | select | timeseries

Introduced in R2015a

2-66

readRGB

readRGB

Extract RGB values from point cloud data

Syntax

rgb = readXYZ(pcloud)

Description

rgb = readXYZ(pcloud) extracts the [r g b] values from all points in the point
cloud object, pcloud and returns them as an n-by-3 of n 3-D point coordinates. If the point
cloud does not contain the RGB field, this function will display an error.

Examples
Read RGB Values from Point Cloud Object

rgb = readRGB(pcloud);

Input Arguments

pcloud — Point cloud
PointCloud2 object handle

Point cloud, specified as a PointCloud2 object handle for a "sensor_msgs/
PointCloud2® ROS message.

Output Arguments

rgb — List of RGBv alues from point cloud
matrix

List of RGB values from point cloud, returned as a matrix. By default, this is a n-by-3
matrix. If the point cloud object being read has the PreserveStructureOnRead

2-67

2 Functions — Alphabetical List

2-68

property set to true, the points are returned as an h-by-w-by-3 matrix. For more
information, see “Preserving Point Cloud Structure” on page 2-68.

More About

Tips

Point cloud data can be organized in either 1-D lists or in 2-D image styles. 2-D image
styles usually come from depth sensors or stereo cameras. The input PointCloud2
object contains a PreserveStructureOnRead property that is either true or False
(default). Suppose you set the property to true.

pcloud.PreserveStructureOnRead = true;

Now calling any read functions (readXYZ,readRGB, or readField) preserves the
organizational structure of the point cloud. When you preserve the structure, the output
matrices are of size m-by-n-by-d, where m is the height, n is the width, and d is the
number of return values for each point. Otherwise, all points are returned as a x-by-d
list. This structure can only be preserved if the point cloud is organized.

See Also
readField | readXYZ

Introduced in R2015a

readScanAngles

readScanAngles

Return scan angles for laser scan range readings

Syntax

angles = readScanAngles(scan)

Description
angles = readScanAngles(scan) calculates the scan angles, angles, corresponding
to the range readings in the laser scan message, scan. Angles are measured counter-

clockerwise around the positive z-axis, with the zero angle along the x-axis. angles is
returned in radians and wrapped to the [—pi, pi] interval.

Examples

Return Laser Scan Angles from Range Data

angles = readScanAngles(scan);

Input Arguments

scan — Laser scan message
LaserScan object handle

"sensor_msgs/LaserScan® ROS message, specified as a LaserScan object handle.

Output Arguments

angles — Scan angles for laser scan data
n—by—1 matrix in radians

2-69

2 Functions — Alphabetical List

Scan angles for laser scan data, returned as an n-by-1 matrix in radians. Angles are
measured counter-clockerwise around the positive z-axis, with the zero angle along the x-
axis. angles is returned in radians and wrapped to the [—p1i, pi] interval.

See Also

plot | readCartesian

Introduced in R2015a

2-70

readXYZ

readXYZ

Extract XYZ coordinates from point cloud data

Syntax

Xyz = readXYZ(pcloud)

Description
xyz = readXYZ(pcloud) extracts the [X y z] coordinates from all points in the point
cloud object, pcloud, and returns them as an n-by-3 matrix of n 3-D point coordinates.

If the point cloud does not contain the x, y, and z fields, this function returns an error.
Points that contain NaN are preserved in the output.

Examples

Read XYZ Coordinates from Point Cloud

Xxyz = readXYZ(pcloud);

Input Arguments

pcloud — Point cloud
PointCloud2 object handle

Point cloud, specified as a PointCloud2 object handle for a "sensor_msgs/
PointCloud2® ROS message.

Output Arguments

xyz — List of XYZ values from point cloud
matrix

2-71

2 Functions — Alphabetical List

2-72

List of XYZ values from point cloud, returned as a matrix. By default, this is a n-by-3
matrix. If the point cloud object being read has the PreserveStructureOnRead
property set to true, the points are returned as an h-by-w-by-3 matrix. For more
information, see “Preserving Point Cloud Structure” on page 2-72.

More About

Tips

Point cloud data can be organized in either 1-D lists or in 2-D image styles. 2-D image
styles usually come from depth sensors or stereo cameras. The input PointCloud2
object contains a PreserveStructureOnRead property that is either true or false
(default). Suppose you set the property to true.

pcloud.PreserveStructureOnRead = true;

Now calling any read functions (readXYZ,readRGB, or readField) preserves the
organizational structure of the point cloud. When you preserve the structure, the output
matrices are of size m-by-n-by-d, where m is the height, n is the width, and d is the
number of return values for each point. Otherwise, all points are returned as a x-by-d
list. This structure can only be preserved if the point cloud is organized.

See Also
readField | readRGB

Introduced in R2015a

receive

receive

Wait for new ROS message

Syntax

msg receive(sub)
msg = receive(sub,timeout)

Description

msg = receive(sub) waits for MATLAB to receive a topic message from the specified
subscriber, sub, and returns it as msg.

msg = receive(sub, timeout) specifies in timeoutthe number of seconds to wait for
a message. If a message is not received within the timeout limit, the software throws an
error.

Examples

Create Subscriber and Receive Data

laser = rossubscriber("/scan”, rostype.sensor_msgs_LaserScan);
scan = receive(laser);

Receive Data with a Two Second Timeout

scan = receive(sub,2);

Input Arguments

sub — ROS subscriber
Subscriber object handle

ROS subscriber, specified as a Subscriber object handle. You can create the subscriber
using rossubscriber.

2-73

2 Functions — Alphabetical List

2-74

timeout — Timeout for receiving a message
scalar in seconds

Timeout for receiving a message, specified as a scalar in seconds.

Output Arguments

msg — ROS message
Message object handle

ROS message, returned as a Message object handle.

See Also

rosmessage | rossubscriber | rostopic

Introduced in R2015a

roboticsSupportPackages

roboticsSupportPackages

Download and install support packages for Robotics System Toolbox

Syntax

roboticsSupportPackages

Description

roboticsSupportPackages allows you to download and install support packages for
Robotics System Toolbox™.,

Examples

Start Robotics Support Package Installer

roboticsSupportPackages

Introduced in R2015a

2-75

2 Functions — Alphabetical List

2-76

rosbag

Open and parse rosbag log file

Syntax

bag = rosbag(filename)

Description

bag = rosbag(filename) creates an indexable BagSelection object, bag, that
contains all the message indexes from the rosbag located at path filename. To access the
data, you can call readMessages or timeseries to extract relevant data.

A rosbag, or bag, is a file format for storing ROS message data. They are used primarily
to log messages within the ROS network. You can use these bags for offline analysis,
visualization, and storage.

This function supports version 2.0 of the rosbag file format. It also supports only
uncompressed rosbags. See the ROS Wiki page for more information about rosbags and
Bag version 2.0.

Examples

Retrieve Information from rosbag
Set the path to a rosbag file.
FfilePath = “path/to/logfile.bag”;
Retrieve information from the rosbag.
bagselect = rosbag(filePath)
Select a subset of the messages, filtered by time and topic

bagselect2 = select(bagselect, "Time",

http://wiki.ros.org/rosbag
http://wiki.ros.org/Bags/Format/2.0

rosbag

[bagselect.StartTime bagselect.StartTime + 1], “Topic®, "/odom®")

Input Arguments

filename — Name of rosbag file and its path
string

Name of file and its path, for the rosbag you want to access, specified as a string. This
path can be relative or absolute.

Output Arguments

bag — Selection of rosbag messages
BagSelection object handle

Selection of rosbag messages, returned as a BagSelection object handle.

See Also

readMessages | select | timeseries

Introduced in R2015a

2-77

2 Functions — Alphabetical List

2-78

rosinit

Connect to ROS network

Syntax

rosinit
rosinit(hostname)
rosinit(hostname, port)
rosinit(URI)
rosinit(___ ,Name,Value)

Description

rosinit starts the global ROS node with a default MATLAB name and tries to connect
to a ROS master running on localhost and port 11311. If the global ROS node cannot
connect to the ROS master, rosinit also starts a ROS core in MATLAB, which consists
of a ROS master, a ROS parameter server, and a rosout logging node.

rosinit(hostname) tries to connect to the ROS master at the host name or IP address
specified by hostname. This syntax uses 11311 as the default port number.

rosinit(hostname, port) tries to connect to the host name or IP address specified by
hostname and the port number specified by port.

rosinit(URI) tries to connect to the ROS master at the given resource identifier, URI,
for example, "http://192.168.1.1:11311°".

rosinit(___ ,Name,Value) provides additional options specified by one
or more Name, Value pair arguments. Name must appear inside single quotes
(" 7). You can specify several name-value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Using rosinitis a prerequisite for most ROS-related tasks in MATLAB because:

* Communicating with a ROS network requires a ROS node connected to a ROS
master.

rosinit

+ By default, ROS functions in MATLAB operate on the global ROS node, or they
operate on objects that depend on the global ROS node.

For example, after creating a global ROS node with rosinit, you can subscribe to
a topic on the global ROS node. When another node on the ROS network publishes

messages on that topic, the global ROS node receives the messages.

If a global ROS node already exists, then rosinit restarts the global ROS node based on
the new set of arguments.

Examples

Start ROS Core and Global Node
rosinit

Initializing ROS master on http://hostname.mathworks.com:11311/.
Initializing global node /matlab_global_node_9152 with NodeURI http://hostname:54194/

Start Node and Connect to ROS Master at Specified IP Address

rosinit("192.168.1.10")

Initializing global node /matlab_tped50a5c2_4448 4d11_a523 9829a6b3b5af with NodeURI h1

Start Global Node at Given IP and Node Name

rosinit("192.168.1.10", “"NodeHost","192.168.1.1","NodeName","/test_node")

Initializing global node /test node with NodeURI http://192.168.1.1:64053/

Input Arguments

hostname — Host name or IP address
string

Host name or IP address, specified as a string.

2-79

2 Functions — Alphabetical List

port — Port number
scalar

Port number used to connect to the ROS master, specified as a scalar.

URI — URI for ROS master

string

URI for ROS master, specified as a string. Standard format for URIs is either http://
ipaddress:port or http://hostname:port

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "NodeHost","192.168.1.1"

*NodeHost" — Host name or IP address
string

Host name or IP address under which the node advertises itself to the ROS network,
specified as the comma-separated pair consisting of 'NodeHost' and a string.

Example: 'comp-home'

*NodeName™ — Global node name
string

Global node name, specified as the comma-separated pair consisting of 'NodeName' and a
string. The node that is created through rosinit is registered on the ROS network with
this name.

Example: 'NodeName','/test_node'

See Also

rosshutdown

Introduced in R2015a

2-80

rosmessage

rosmessage

Create ROS messages

Syntax

msg rosmessage(messagetype)
msg = rosmessage(pub)

msg rosmessage(sub)

msg rosmessage(client)

msg = rosmessage(server)

Description

msg = rosmessage(messagetype) creates an empty ROS message object with
message type. The messagetype string is case-sensitive and no partial matches are
allowed. It must match a message on the list given by calling rosmsg(" list"). To avoid
errors in entering the message type, you can use rostype with tab completion to browse
the list of all available types.

msg = rosmessage(pub) creates an empty message determined by the topic published
by pub.

msg = rosmessage(sub) creates an empty message determined by the subscribed
topic of sub.

msg = rosmessage(client) creates an empty message determined by the service
associated with client.

msg = rosmessage(server) creates an empty message determined by the service type
of server.

2-81

2 Functions — Alphabetical List

2-82

Examples
Create Empty String Message
strMsg = rosmessage("std_msgs/String”);
Create Laser Scan Message using rostype
scan = rosmessage(rostype.sensor_msgs_LaserScan);

Create Message to Publish using ROS Publisher

chatpub = rospublisher("/chatter”, "std_msgs/String”);
chatmsg = rosmessage(chatpub);
Input Arguments

messagetype — Message type
string

Message type, specified as a string. The string is case-sensitive and no partial matches
are allowed. It must match a message on the list given by calling rosmsg("list*®). To
avoid errors in entering the message type, you can use rostype with tab completion to
browse the list of all available types.

pub — ROS publisher
Publisher object handle

ROS publisher, specified as a Publ isher object handle. You can create the object using
rospublisher.

sub — ROS subscriber
Subscriber object handle

ROS subscriber, specified as a Subscriber object handle. You can create the object
using rossubscriber.

client — ROS service client
ServiceClient object handle

ROS service client, specified as a ServiceClient object handle. You can create the
object using rossvcclient.

rosmessage

server — ROS service server
ServiceServer object handle

ROS service server, specified as a ServiceServer object handle. You can create the
object using rossvcserver.

Output Arguments

msg — ROS message
Message object handle

ROS message, returned as a Message object handle.

More About

. “Built-In Message Support”

See Also

roboticsSupportPackages | rosmsg | rostype

Introduced in R2015a

2-83

2 Functions — Alphabetical List

2-84

rosmsg

Retrieve information about ROS messages and message types

Syntax

rosmsg show msgtype
rosmsg md5 msgtype
rosmsg list

msginfo = rosmsg("show®, msgtype)

msgmd5 = rosmsg("md5", msgtype)
msglist = rosmsg("list")

Description

rosmsg show msgtype returns the definition of the msgtype message.

rosmsg md5 msgtype returns the MD5 checksum of the msgtype message.
rosmsg list returns all available message types that you can use in MATLAB.

msginfo = rosmsg("show®, msgtype) returns the definition of the msgtype message
as a string.

msgmd5 = rosmsg("md5", msgtype) returns the ‘MD5’ checksum of the msgtype
message as a string.

msglist = rosmsg("list") returns a cell array containing all available message
types that you can use in MATLAB.

Examples

Retrieve Message Type Definition
msglnfo = rosmsg(“show", "geometry_msgs/Point")

msginfo =

rosmsg

% This contains the position of a point in free space
double X
double Y
double Z

Get the MD5 Checksum of Message Type

msgMd5

rosmsg("md5", "geometry_msgs/Point®)
msgMd5 =

4a842b651413084dc2b10fh484ea7t17

Input Arguments

msgtype — ROS message type

string

ROS message type, specified as a string. msgType must be a valid ROS message type
from ROS that MATLAB supports.

Example: 'std_msgs/Int8'

Output Arguments

msginfo — Details of message definition
string

Details of the information inside the ROS message definition, returned as a string.

msgmd5 — MDS5 checksum hash value
string

MD5 checksum hash value, returned as a string. The MD5 output is a string
representation of the 16-byte hash value that follows the MD5 standard.

msglist — List of all message types available in MATLAB
cell array of strings

List of all message types available in MATLAB, returned as a cell array of strings.

2-85

2 Functions — Alphabetical List

Introduced in R2015a

2-86

rosnode

rosnode

Retrieve information about ROS network nodes

Syntax

rosnode list
rosnode info nodename
rosnode ping nodename

nodelist = rosnode("list")
nodeinfo = rosnode("info",nodename)
rosnode("ping~ ,nodename)

Description

rosnode list returns a list of all nodes registered on the ROS network. Use these
nodes to exchange data between MATLAB and the ROS network.

rosnode info nodename returns a structure containing the name, URI, publications,
subscriptions, and services of a specific ROS node,nodename.

rosnode ping nodename pings a specific node, nodename, and displays the response
time.

nodelist = rosnode("list") returns a cell array of strings containing the nodes
registered on the ROS network.

nodeinfo = rosnode("info",nodename) returns a structure containing the name,
URI, publications, subscriptions, and services of a specific ROS node, nodename.

rosnode("ping”,nodename) pings a specific node, nodename and displays the
response time.

Examples
Retrieve List of ROS Nodes

rosnode list

2-87

2 Functions — Alphabetical List

2-88

/bumper2pointcloud

/cmd_vel _mux

/depthimage_to_laserscan

/gazebo

/laserscan_nodelet_manager
/matlab_tp8cc35a0e_35fd_4170_9886_ 9e489b95b611
/mobile_base nodelet_manager

/robot_state publisher

/rosout

Retrieve ROS Node Info
nodeinfo = rosnode("info","/robot_state publisher®)
nodeinfo =
NodeName: “/robot_state publisher*®
URI: "http://192.168.154.132:58140/"
Publications: [2x1 struct]

Subscriptions: [2x1 struct]
Services: [2x1 struct]

Ping ROS Node
rosnode("ping”, "/robot_state publisher™)

Pinging the /robot_state_publisher node with a timeout of 3 seconds.

Ping reply from http://192.168.154.132:58140/, response time = 2.920 ms.
Ping reply from http://192.168.154.132:58140/, response time = 2.138 ms.
Ping reply from http://192.168.154.132:58140/, response time = 2.194 ms.
Ping reply from http://192.168.154.132:58140/, response time = 4.607 ms.

Ping average time: 2.965 ms

Input Arguments

nodename — Name of node
string

Name of node, specified as a string. The name of the node must match the name given in

ROS.

rosnode

Output Arguments

nodeinfo — Information about ROS node
structure

Information about ROS node, returned as a structure containing these properties:
"NodeName™, "URI ", "Publications”, "Subscriptions”, and "Services". Access
these properties using dot syntax, for example, node info.NodeName.

nodelist — List of node names available
cell array of strings

List of node names available, returned as a cell array of strings.

See Also

rosinit | rostopic

Introduced in R2015a

2-89

2 Functions — Alphabetical List

2-90

rosparam

Access ROS parameter server values

Syntax

ptree = rosparam

Description

ptree = rosparam creates a parameter tree object, ptree. Once ptree is created, the
connection to the parameter server remains persistent until the object is deleted or the
ROS master becomes unavailable.

A ROS parameter tree communicates with the ROS parameter server. The ROS
parameter server can store strings, integers, doubles, booleans and cell arrays. The
parameters are accessible by every node in the ROS network. Use the parameters to
store static data such as configuration parameters. Use the get, set, has, search, and
del functions to manipulate and view parameter values.

Examples

Create Parameter Tree Object and View Parameters
ptree = rosparam
ptree =
ParameterTree with properties:
AvailableParameters: {40x1 cell}
ptree.AvailableParameters
ans =

*/bumper2pointcloud/pointcloud_radius®
"/camera/imager_rate”

rosparam

"/camera/rgb/image_raw/compressed/format*®

Output Arguments

ptree — Parameter tree
ParameterTree object handle

Parameter tree, returned as a ParameterTree object handle. Use this object to reference
parameter information, for example, ptree.AvailableFrames.

See Also

del | get | has | search | set

Introduced in R2015a

2-91

2 Functions — Alphabetical List

2-92

rospublisher

Publish messages on a topic

Syntax

pub = rospublisher(topicname)

pub = rospublisher(topicname,msgtype)
pub = rospublisher(___ ,Name,Value)

[pub,msg] = rospublisher(__)

rospublisher(topicname,msq)

Description

pub = rospublisher(topicname) creates a publisher, pub, for a topic, topicname,
that already exists on the ROS master topic list. The publisher gets the topic message
type from the topic list on the ROS master. When the MATLAB global node publishes
messages on that topic, ROS nodes that subscribe to that topic receive those messages.
If the topic is not on the ROS master topic list, this function displays an error message.
To see a list of available topic names, at the MATLAB command prompt, type rostopic
list/

pub = rospublisher(topicname,msgtype) creates a publisher for a topic and adds
that topic to the ROS master topic list. If the ROS master topic list already contains a
matching topic, the ROS master adds the MATLAB global node to the list of publishers
for that topic. If msgtype differs from the topic type on the ROS master topic list, the
function displays an error message.

pub = rospublisher(___ ,Name,Value) provides additional options specified by one
or more Name,Value pair arguments using any of the argument from previous syntaxes.
Name is the property name and Value is the corresponding value. Name must appear
inside single quotes (" "). You can specify several name-value pair arguments in any
order as Namel,Valuel, . .. ,NameN,ValueN). Properties not specified retain their
default values.

[pub,msg] = rospublisher() returns a message, msg, that you can send with
the publisher, pub. The message is initialized with default values.

rospublisher

rospublisher(topicname,msg) publishes a message, msg, to the specified topic
without creating a publisher.

Properties: When you call rospublisher, pub is returned as a Publisher object with
the following properties:

+ TopicName (read-only): Name of the published topic

+ MessageType (read-only): Message type of published messages

* IsLatching: Indicates if publisher is latching

* NumSubscribers (read-only): Number of current subscribers for the published topic

To access these properties, use pub.TopicName, pub.MessageType, pub. IsLatching,
or pub_.NumSubscribers.

Examples

Create a Publisher with Specified Message Type and Send String Data

chatpub = rospublisher("/chatter”, “std_msgs/String”);
msg = rosmessage(chatpub);

msg.Data = "Some test string”;

send(chatpub,msg);

Send Single Message Without Creating a Publisher

rospublisher("/chatter”,msg)

Input Arguments

topicname — ROS topic name
string

ROS topic name, specified as a string.

msgtype — Message type for ROS topic

string

ROS message type, specified as a string.

2-93

2 Functions — Alphabetical List

2-94

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "IsLatching”,false

" IsLatching” — Latch property
true (default) | logical

Latch property, specified as the comma-seperated pair consisting of " isLatching and a
logical. If enabled, latch mode saves the last message sent by the publisher and resends it
to new subscribers. By default, latch mode is disabled (False). To enable latch mode, set
"IsLatching” to true.

Output Arguments

pub — ROS publisher
Publisher object handle

ROS publisher, returned as a Publ isher object handle.

msg — ROS message
Message object handle

ROS message, returned as a Message object handle.

See Also

rosmessage | rossubscriber

Introduced in R2015a

rosservice

rosservice

Retrieve information about services in ROS network

Syntax

rosservice list

rosservice info svcname
rosservice type svcname
rosservice uri svcname

svclist = rosservice("list")

svcinfo = rosservice("info",svcname)
svctype = rosservice("type~,svchame)
svcuri = rosservice("uri”,svcname)

Description

rosservice list returns a list of service names for all of the active service servers on
the ROS network.

rosservice info svcname returns information about the specified service, svcname.
rosservice type svcname returns the service type.
rosservice uri svcname returns the URI of the service.

svclist = rosservice("list") returns a list of service names for all of the active
service servers on the ROS network. svclist contains a cell array of service names.

svcinfo = rosservice("info",svcname) returns a structure of information,
sveinfo, about the service, svcname.

svctype = rosservice("type”,svcname) returns the service type of the service as
a string.

svcuri = rosservice("uri”,svcname) returns the URI of the service as a string.

2-95

2 Functions — Alphabetical List

2-96

Examples

View List of ROS Services

rosservice list

/bumper2pointcloud/get_loggers
/bumper2pointcloud/set_logger_level
/camera/rgb/image_raw/compressed/set_parameters

Get Information, Type and URI for ROS Service

Get the service information.

svcinfo

svcinfo

Node:

URI :
Type:
Args:

rosservice("info", "gazebo/pause_physics™)

"/gazebo*
"rosrpc://192.168.154.132:33953"
"std_srvs/Empty”

O

Get the service type.

svctype

svctype

rosservice("type”, "gazebo/pause_physics™)

std_srvs/Empty

Get the service URI.

svcuri =

svcuri

rosservice("uri”, "gazebo/pause_physics®)

rosrpc://192.168.154.132:33953

Input Arguments

svcname — Name of service

string

rosservice

Name of service, specified as a string. The service name must match its name in the ROS

network.

Output Arguments

svcinfo — Information about a ROS service
string

Information about a ROS service, returned as a string.

svclist — List of available ROS services
cell array of strings

List of available ROS services, returned as a cell array of strings.

svctype — Type of ROS service

string
Type of ROS service, returned as a string.

svcuri — URI for accessing service
string

URI for accessing service, returned as a string.

See Also

rosinit | rosparam

Introduced in R2015a

2-97

2 Functions — Alphabetical List

rosshutdown

Shut down ROS system

Syntax

rosshutdown

Description

rosshutdown shuts down the global node and, if it is running, the ROS master. When
you finish working with the ROS network, use rosshutdown to shut down the global
ROS entities created by rosinit. If the global node and ROS master are not running,
this function has no effect. After calling rosshutdown, any ROS entities that depend on
the global node, for example, subscribers created with rossubscriber, are deleted and
become unstable.

Examples

Shut Down Global ROS Node

rosshutdown

Shutting down global node /matlab_global_node_9220 with NodeURI http://hostname:54335/
Shutting down ROS master on http://hostname.mathworks.com:11311/.

See Also

rosinit

Introduced in R2015a

2-98

rossubscriber

rossubscriber

Subscribe to messages on a topic

Syntax

sub = rossubscriber(topicname)

sub = rossubscriber(topicname,msgtype)

sub = rossubscriber(topicname,cal lback)

sub = rossubscriber(topicname, msgtype,callback)
sub = rossubscriber(___ ,Name,Value)
Description

sub = rossubscriber(topicname) subscribes to a topic with name topicname. If the
ROS master topic list includes topicname, this syntax returns a subscriber object handle,
sub. If the ROS master topic list does not include the topic, this syntax displays an error.
rossubscriber enables you to transfer data by subscribing to messages. When ROS
nodes publish messages on that topic, MATLAB receives those messages through this
subscriber.

sub = rossubscriber(topicname,msgtype) subscribes to a topic that has the
specified name, topicname, and type, msgtype. If the topic list on the ROS master does
not include a topic with that specified name and type, a topic with the specific name and
type is added to the topic list. Use this syntax to avoid errors when it is possible for the
subscriber to subscribe to a topic before a publisher has added the topic to the topic list
on the ROS master.

sub = rossubscriber(topicname,cal lback) specifies a callback function, callback
that runs when the subscriber object handle receives a topic message. Use this syntax

to avoid the blocking receive function. callback can be a single function handle or a

cell array. The first element of the cell array must be be a function handle or a string
containing the name of a function. The remaining elements of the cell array can be
arbitrary user data that is passed to the callback function.

2-99

2 Functions — Alphabetical List

2-100

sub = rossubscriber(topicname, msgtype,callback) specifies a callback
function and subscribes to a topic that has the specified name, topicname, and type,
msgtype.

sub = rossubscriber(___ ,Name,Value) provides additional options specified

by one or more Name, Value pair arguments using any of the argument from previous
syntaxes. Name is the property name and Value is the corresponding value. Name must
appear inside single quotes ("). You can specify several name-value pair arguments in
any order as Namel,Valuel, . .. ,NameN,ValueN). Properties not specified retain their
default values.

Properties: When you call rossubscriber, sub is returned as a Subscriber object
with the following properties:

+ TopicName (read-only): Name of the published topic

+ MessageType (read-only): Message type of published messages
* LatestMessage (read-only): Latest message received

+ BufferSize (read-only): Buffer size of the incoming queue

+ NewMessageFcn: Callback property for subscriber callbacks

To access these properties, use sub.TopicName, sub.MessageType,
sub.LatestMessage, sub.BufferSize, or sub.NewMessageFcn..

Examples

Create Subscriber

sub = rossubscriber("/scan”);

Create Subscriber Using rostype for Message Type

Create the subscriber.

sub = rossubscriber(”"/scan®, rostype.sensor_msgs_lLaserScan);

Get the last message from the topic.

scan = sub.LatestMessage;

Wait to receive the next message and store in scan.

rossubscriber

scan = receive(sub);
Create Subscriber Using Callback Function

Create the publisher and subscriber.

chatpub
chatsub

rospublisher("/chatter”, rostype.std_msgs_String);
rossubscriber("/chatter”, @testCallback);

Change the Callback Function of Existing Subscriber
chatsub = rossubscriber("/chatter”, @testCallback);

userData = [56 1; 1 5];
chatsub._NewMessageFcn = {@funcl, userData};

Create Subscriber with Specified Buffer Size

chatbuf = rossubscriber("/chatter®, "BufferSize®, 5);

Input Arguments

topicname — ROS topic name
string

ROS topic name, specified as a string.

msgtype — Message type for ROS topic

string
Message type for ROS topic, specified as a string.

cal lback — Callback function
function handle | cell array

Callback function, specified as a function handle or cell array. In the first element of the
cell array, specify either a function handle or a string representing a function name. In
subsequent elements, specify user data.

The subscriber callback function requires at least two input arguments. The first
argument, Src, is the associated subscriber object. The second argument, msg, is the
received message object. The function header for the callback is:

2-101

2 Functions — Alphabetical List

2-102

function subCallback(src,msg)

When setting the callback, you pass additional parameters to the callback function by
including both the callback function and the parameters as elements of a cell array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "Buffersize®,b25

"BufferSize" — Buffer size
1 (default) | scalar

Buffer size, specified as the comma-separated pair consisting of "BufferSize” and a
scalar. If messages arrive faster and than your callback can process them, they will be
deleted once the incoming queue is full.

"NewMessageFcn™ — Callback property
function handle | cell array

Callback property, specified as a function handle or cell array. In the first element of the
cell array, specify either a function handle or a string representing a function name. In
subsequent elements, specify user data.

The subscriber callback function requires at least two input arguments. The first
argument, Src, is the associated subscriber object. The second argument, msg, is the
received message object. The function header for the callback is:

function subCallback(src,msg)

When setting the callback, you pass additional parameters to the callback function by
including both the callback function and the parameters as elements of a cell array.

Output Arguments

sub — ROS subscriber
Subscriber object handle

rossubscriber

ROS subscriber, returned as a Subscriber object handle. You can create the object
using rossubscriber.

See Also

rosmessage | rospublisher

Introduced in R2015a

2-103

2 Functions — Alphabetical List

2-104

rossvcclient

Create ROS service client

Syntax

client = rossvcclient(servicename)
client rossvcclient(servicename,Name,Value)

[client,reqmsg] = rossvcclient()

Description

client = rossvcclient(servicename) creates a service client that connects to,
and gets its service type from, a service server. This command syntax blocks the current
MATLAB program from running until it can connect to the service server.

Use rossvcclient to create a ROS service client. This service client uses a persistent
connection to send requests to, and receive responses from, a ROS service server. The
connection persists until the service client is deleted or the service server becomes
unavailable.

client = rossvcclient(servicename,Name,Value) provides additional options
specified by one or more Name, Value pair arguments. Name must appear inside single
quotes (" ™). You can specify several name-value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

[client,reqmsg] = rossvcclient() returns a new service request message in
reqmsg, using any of the arguments from previous syntaxes. The message type of reqmsg
is determined by the service that client is connected to. The message is initialized with
default values.

Properties: When you call rossubscriber, client is returned as a ServiceClient
object with the following properties:

+ ServerName (read-only): Name of the service
+ ServiceType (read-only): Type of the service

rossveclient

To access these properties, use client.ServerName or client.ServerType.

Examples

Create Service Client and Wait to Connect to Service

client = rossvcclient("/gazebo/get _model_state®);

Connect to Service Server with Timeout

client = rossvcclient("/gazebo/get _model _state®, "Timeout®, 3);

Create Service Request Message and Call for Response
Create the service request message.

request = rosmessage(client);
Send the service request and wait for a response.

request._ModelName = "SomeModel " ;
response = call(client, request);

Create a Service Client and Get a Request Message

[client,regmsg] = rossvcclient("/gazebo/get_model_state®);

Input Arguments

servicename — Service name
string

Service name, specified as a string. To access information about active services, such as

the service name, use the rosservice function.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the

argument name and Value is the corresponding value. Name must appear inside single

2-105

2 Functions — Alphabetical List

2-106

quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "Timeout”,10

"Timeout" — Timeout period in seconds
inf (default) | scalar

Timeout period in seconds, specified as a scalar. If the service client does not connect
to the service server by the end of the timeout period, rossvcclient displays an error
message, and MATLAB keeps running the current program. The default value of inF
blocks MATLAB from running the current program until the service client is connected
to the service server.

Output Arguments

client — ROS service client
ServiceClient object handle

ROS service client, returned as a ServiceClient object handle. This service client uses
a persistent connection to send requests to, and receive responses from, a ROS service
server.

regmsg — ROS message
Message object handle

ROS message, returned as a Message object handle that matches the request type of the
service.

See Also

call | rosservice | rossvcserver

Introduced in R2015a

rossvcserver

rossvcserver

Create ROS service server

Syntax

server = rossvcserver(servicename,svctype)
server = rossvcserver(servicename,svctype,callback)

servicename = rossvcserver(servicename,svctype,Name,Value)

Description

server = rossvcserver(servicename,svctype) creates a service server object
of type svctype available in the ROS network under the name servicename. The service
object cannot respond to service requests until you specify a function handle callback.

Use rossvcserver to create a ROS service server that can receive requests from, and
send responses to, a ROS service client. The service server must exist before creating the
service client. When you create the client, it establishes a connection to the server. The
connection persists while both client and server exist and can reach each other.

server = rossvcserver(servicename,svctype,callback) specifies the function
handle callback, callback, that constructs a response when the server receives a request.
callback can be a single function handle or a cell array. The first element of the cell array
must be a function handle or a string containing the name of a function. The remaining
elements of the cell array can be arbitrary user data that is passed to the callback
function.

servicename = rossvcserver(servicename,svctype,Name,Value)
provides additional options specified by one or more Name ,Value pair arguments
using any of the argument from previous syntaxes. Name is the property name

and Value is the corresponding value. Name must appear inside single quotes

(™ "). You can specify several name-value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN). Properties not specified retain their default
values.

Properties: When you call rossubscriber, server is returned as a ServiceServer
object with the following properties:

2-107

2 Functions — Alphabetical List

2-108

* ServerName (read-only): Name of the service
+ ServiceType (read-only): Type of the service

+ NewRequestFcn: Callback property for service request callbacks

To access these properties, use client.ServerName, client.ServerType, or

client_NewRequestFcn.

Examples

Create Service Server

server = rossvcserver("/gazebo/get_model_state®, rostype.gazebo_msgs_GetModelState)

Create Service Server with Callback Function and User Data

Create user data.

userData = randi(20);

Create a service server.

server = rossvcserver("/gazebo/get model state2”,

{@funcl, userData});

Change the callback for a incoming service calls.

server _NewRequestFcn = @func2;

Input Arguments

servicename — Service name
string

rostype.gazebo _msgs GetModelState

Service name, specified as a string. You can access information about active services,

such as the service name, using rosservice.

svctype — Service message type
string

Service message type, specified as a string. You can access information about service
message types using rostype. Use tab completion to select the message.

rossvcserver

callback — Callback function and inputs
function handle | cell array

Callback function and inputs, specified as a function handle or a cell array. The first
element of the cell array must be a function handle or a string containing the name of
a function. The remaining elements of the cell array can be arbitrary user data that is
passed to the callback function. The service server callback function requires at least
three input arguments and one output. The first argument, server, is the associated
service server object. The second argument, reqmsg, is the request message object
sent by the service client. The third argument is the default response message object,
defaultrespmsg. Use defaultrespmsg as a starting point for constructing the
function output response, which is sent back to the service client.

function response = serviceCallback(server,regmsg,defaultrespmsg)
response = defaultrespmsg;
% Build the response message here

end

While setting the callback, to construct a callback that accepts additional parameters,
use a cell array that includes the function handle callback and the parameters.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "NewMessageFcn® ,{@funcl,userDate}

"NewMessageFcn® — Callback property
function handle | cell array

Callback property, specified as a function handle or a cell array. The first element of
the cell array must be a function handle or a string containing the name of a function.
The remaining elements of the cell array can be arbitrary user data that is passed

to the callback function. The service server callback function requires at least three
input arguments and one output. The first argument, server, is the associated
service server object. The second argument, regmsg, is the request message object
sent by the service client. The third argument is the default response message object,
defaultrespmsg. Use defaultrespmsg as a starting point for constructing the
function output response, which is sent back to the service client.

2-109

2 Functions — Alphabetical List

2-110

function response = serviceCallback(server,regmsg,defaultrespmsg)
response = defaultrespmsg;
% Build the response message here

end

While setting the callback, to construct a callback that accepts additional parameters,
use a cell array that includes the function handle callback and the parameters.

Output Arguments

server — Service server
ServiceServer object handle

Service server, returned as a ServiceServer object handle. This service server registers
with the ROS master, which enables service clients to send it requests.

See Also

rossvcclient

Introduced in R2015a

rostf

rostf

Access ROS transformations

Syntax

tfTree = rostf

Description

tfTree = rostf creates a ROS transformation tree object. The object allows you
to access the tf coordinate transformations that are shared on the ROS network. You
can receive transformations and apply them to different entities. You can also send
transformations and share them with the rest of the ROS network.

ROS uses the tf transform library to keep track of the relationship between multiple
coordinate frames. The relative transformations between these coordinate frames is
maintained in a tree structure. Querying this tree lets you transform entities like poses
and points between any two coordinate frames. To access available frames use the
syntax:

tfTree.AvailableFrames

MATLAB can only keep track of the most current information between different frames.
ROS tf allows for “time-traveling” or retrieving transformations from specific time
instances.

Examples

Create Transformation Tree

tree = rostf;

Output Arguments

tfTree — ROS transformation tree
TransformationTree object handle

2-111

2 Functions — Alphabetical List

ROS transformation tree, returned as a TransformationTree object handle.

See Also

getTransform | transform

Introduced in R2015a

2-112

rostime

rostime

Access ROS time functionality

Syntax

time = rostime("now")
[time, issimtime] = rostime(“now")
time = rostime("now", "system®)

Description

time = rostime("now") returns the current ROS time. If the use_sim_time ROS
parameter is set to true, the rostime returns the simulation time published on the
clock topic. Otherwise, the function returns your machine’s system time. time is a ROS
Time object. If no output argument is given, the current time (in seconds) is printed to
the screen.

rostime can be used to timestamp messages or to measure time in the ROS network.

[time,issimtime] = rostime("now") also returns a Boolean that indicates if time
is in simulation time (true) or system time (False).

time = rostime("now", "system") always returns your machine's system time, even
if ROS publishes simulation time on the clock topic. If no output argument is given, the
system time (in seconds) is printed to the screen.

The system time in ROS follows the Unix or POSIX time standard. POSIX time is
defined as the time that has elapsed since 00:00:00 Coordinated Universal Time (UTC), 1
January 1970, not counting leap seconds.

Examples

Show Current ROS Time

t = rostime("now")

2-113

2 Functions — Alphabetical List

2-114

ROS Time with properties:

Sec: 1417812065
Nsec: 368000000

Indicate Whether Time is System Time

[t,issim] = rostime("now");

ROS Time with properties:
Sec: 1417812173
Nsec: 171000000
issim =
0

Timestamp Message Data

point = rosmessage("geometry_msgs/PointStamped™);
point.Header.Stamp = rostime("now", "system”);

Output Arguments

time — Current ROS or system time
Time object handle

Current ROS or system time, returned as a Time object handle. By default, time
is the ROS simulation time published on the clock topic. If the system time if the
use_sim_time ROS parameter is set to true, time returns the system time..

issimtime — System time indicator
boolean

System time indicator, returned as a boolean. This indicates whether the time argument
1s in simulation time (true) or system time (False), returned as a Boolean.

rostime

See Also

rosmessage

Introduced in R2015a

2-115

2 Functions — Alphabetical List

2-116

rostopic

Retrieve information about ROS topics

Syntax

rostopic list

rostopic echo topicname
rostopic info topicname
rostopic type topicname

topiclist = rostopic("list")

msg = rostopic("echo”, topichame)
topicinfo = rostopic("info", topicname)
msgtype = rostopic("type”, topicname)

Description
rostopic list returns a list of ROS topics from the ROS master.

rostopic echo topicname returns the messages being sent from the ROS master
about a specific topic, topicname. To stop returning messages, press Ctrl+C.

rostopic info topicname returns the message type, publishers, and subscribers for
a specific topic, topicname.

rostopic type topicname returns the message type for a specific topic.

topiclist = rostopic("list") returns a cell array containing the ROS topics from
the ROS master. If you do not define the output argument, the list is returned in the
MATLAB Command Window.

msg = rostopic("echo”, topicname) returns the messages being sent from the
ROS master about a specific topic, topicname. To stop returning messages, press Ctrl+C.
If the output argument is defined, then rostopic returns the first message that arrives
on that topic.

topicinfo = rostopic("info", topicname) returns a structure containing the
message type, publishers, and subscribers for a specific topic, topicname.

rostopic

msgtype = rostopic("type", topicname) returns a string containing the message
type for the specified topic, topicname.

Examples

Get Llist of Topics Available on ROS Master
rostopic list

/camera/depth/camera_info

/camera/depth/image_raw

/camera/depth/points
/camera/parameter_descriptions

Get Topic Info for Specified ROS Topic
topicinfo = rostopic("info", "camera/depth/points®)
topicinfo =
MessageType: "sensor_msgs/PointCloud2*
Publishers: [1x1 struct]
Subscribers: [0Ox0 struct]

Get Message Type for Specified ROS Topic

msgtype = rostopic("type”, “camera/depth/points®)

msgtype =

sensor_msgs/PointCloud2

Input Arguments

topicname — ROS topic name
string

ROS topic name, specified as a string. The topic name must match one of the topics
thatrostopic("list") outputs.

2-117

2 Functions — Alphabetical List

2-118

Output Arguments

topiclist — List of topics from the ROS master
cell array of strings

List of topics from ROS master, returned as a cell array of strings.

msg — ROS message for a given topic
object handle

ROS message for a given topic, returned as an object handle.

topicinfo — Information about a given ROS topic
structure

Information about a ROS topic, returned as a structure. topicinfo included the
message type, publishers, and subscribers associated with that topic.

msgtype — Message type for a ROS topic

string

Message type for a ROS topic, returned as a string.

Introduced in R2015a

rostype

rostype

Access available ROS message types

Syntax

rostype

Description

rostype creates a blank message of a certain type by browsing the list of available
message types. You can use tab completion and do not have to rely on typing error-free
message type strings. By typing rostype.partialstring, and pressing Tab, a list

of matching message types appears in a list. By setting the message type equal to a
variable, you can create a string of that message type. Alternatively, you can create the
message by supplying the message type directly into rosmessage as an input argument.

Examples

Create ROS Message Type and ROS Message

t = rostype.std_msgs_String
msg = rosmessage(rostype.sensor_msgs_PointCloud2);

Introduced in R2015a

2-119

2 Functions — Alphabetical List

rotm2axang

Convert rotation matrix to axis-angle rotation

Syntax

axang = rotm2axang(rotm)

Description

axang = rotm2axang(rotm) converts a rotation given as an orthonormal rotation
matrix, rotm, to the corresponding axis-angle representation, axang. The input rotation
matrix must be in the premultiply form for rotations.

Examples

Convert Rotation Matrix to Axis-Angle Rotation

rotm = [1 00 ; O -1 0; 00 -1];
axang = rotm2axang(rotm)

axang =
1.0000 0 0 3.1416
Input Arguments

rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. The input rotation matrix must
be in the premultiply form for rotations.

Example: [O O 1; O 1 0; -1 0 0]

2-120

rotm2axang

Output Arguments

axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, returned as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axis, and the last element
defines the rotation angle (in radians).

Example: [1 0 0 pi/2]

See Also

axang2rotm

Introduced in R2015a

2-121

2 Functions — Alphabetical List

2-122

rotm2eul

Convert rotation matrix to Euler angles

Syntax

eul = rotm2eul (rotm)
eul rotm2eul (rotm,sequence)

Description

eul = rotm2eul (rotm) converts a rotation matrix, rotm, to the corresponding Euler
angles, eul. The input rotation matrix must be in the premultiply form for rotations. The
default order for Euler angle rotations is "ZYX".

eul = rotm2eul(rotm,sequence) converts a rotation matrix to Euler angles. The
Euler angles are specified in the axis rotation sequence, sequence. The default order for
Euler angle rotations is "ZYX".

Examples

Convert Rotation Matrix to Euler Angles

rotm = [0 0 1; O 1 O; -1 O O];
eulzYX = rotm2eul (rotm)

eulzyx =
0 1.5708 0

Convert Euler Angles to Quaternion Using ZYZ Axis Order

rotm = [0 0 1; O -1 O0; -1 O O];
eulzYZ = rotm2eul (rotm, “ZYZ")

eulzyz =

rotm2eul

0 1.5708 3.1416

Input Arguments

rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. The input rotation matrix must
be in the premultiply form for rotations.

Example: [O O 1; 0 1 0; -1 0 0]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ"

Axis rotation sequence for the Euler angles, specified as one of these strings:

+ "ZYX" (default) — The order of rotation angles is z-axis, y-axis, x-axis.

* "ZYZ" — The order of rotation angles is z-axis, y-axis, z-axis.

Output Arguments

eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.

Example: [0 O 1.5708]

See Also

eul2rotm

Introduced in R2015a

2-123

2 Functions — Alphabetical List

rotm2quat

Convert rotation matrix to quaternion

Syntax

quat = rotm2quat(rotm)

Description

quat = rotm2quat(rotm) converts a rotation matrix, rotm, to the corresponding unit
quaternion representation, quat. The input rotation matrix must be in the premultiply
form for rotations.

Examples

Convert Rotation Matrix to Quaternion

rotm = [0 O 1; 0 1 O0; -1 0 O];
quat = rotm2quat(rotm)
quat =
0.7071 0 0.7071 0
Input Arguments

rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. The input rotation matrix must
be in the premultiply form for rotations.

Example: [O O 1; O 1 0; -1 0 0]

2-124

rotm2quat

Output Arguments

quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form g = [w x y z], with w as the scalar number.

Example: [0.7071 0.7071 O O]

See Also

quat2rotm

Introduced in R2015a

2-125

2 Functions — Alphabetical List

2-126

rotm2tform

Convert rotation matrix to homogeneous transformation

Syntax

tform = rotm2tform(rotm)

Description

tform = rotm2tform(rotm) converts the rotation matrix, rotm, into a homogeneous
transformation matrix, tform. The input rotation matrix must be in the premultiply form
for rotations. When using the transformation matrix, premultiply it with the coordinates
to be transformed (as opposed to postmultiplying).

Examples

Convert Rotation Matrix to Homogeneous Transformation

rotm=[1 00 ; 0 -10; 00 -1];
tform = rotm2tform(rotm)

tform =
1 0 0 0
0 -1 0 0
0 0 -1 0
0 0 0 1
Input Arguments

rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. The input rotation matrix must
be in the premultiply form for rotations.

rotm2tform

Example: [0 O 1; 0 1 0; -1 0 0]

Output Arguments

tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to
be rotated (as opposed to postmultiplying).

Example: [0 0 1 0; 01 00; -1 000; 000 1]

See Also

tform2rotm

Introduced in R2015a

2-127

2 Functions — Alphabetical List

2-128

scafter3

Display point cloud in scatter plot

Syntax

scatter3(pcloud)
scatter3(pcloud,Name,Value)
h = scatter3()]

Description

scatter3(pcloud) plots the input pcloud point cloud as a 3-D scatter plot in the
current axes handle. If the data contains RGB information for each point, the scatter plot
is colored accordingly.

scatter3(pcloud,Name,Value) provides additional options specified by

one or more Name,Value pair arguments. Name must appear inside single
quotes (" "). You can specify several name-value pair arguments in any order as
Namel,Valuel, . .. ,NameN,ValueN)

h = scatter3() returns the scatter series object, using any of the arguments from
previous syntaxes. Use h to modify properties of the scatter series after it is created.

When plotting ROS point cloud messages, MATLAB follows the standard ROS
convention for axis orientation. This convention states that positive x is forward,
positive y is left, and positive z is up. However, if cameras are used, a second frame
is defined with an “_optical” suffix which changes the orientation of the axis. In this case,
positive z is forward, positive x is right, and positive y is down. MATLAB looks for the

“ optical” suffix and will adjust the axis orientation of the scatter plot accordingly. For
more information, see Axis Orientation on the ROS Wiki.

http://www.ros.org/reps/rep-0103.html#axis-orientation

scatter3

Examples

Show 3-D Point Cloud
scatter3(pcloud);
Show 3-D Ppoint Cloud with Uniform Red Points

scatter3(pcloud, "MarkerEdgeColor®,[1 0 0]);

Input Arguments

pcloud — Point cloud
PointCloud2 object handle

Point cloud, specified as a PointCloud2 object handle for a "sensor_msgs/
PointCloud2® ROS message.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "MarkerEdgeColor®,[1 0 O]

"MarkerEdgeColor"™ — Marker outline color
"flat” (default) | "none” | RGB triplet | color string

Marker outline color, specified as one of these values:

+ "flat"™ — Colors defined by the CData property.

* "none” — No color, which makes unfilled markers invisible.

+ RGB triplet or color string — Specify a custom color.

An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range

[0,1], for example, [0.4 0.6 0.7]. This table lists RGB triplet values that have
equivalent color strings.

2-129

2 Functions — Alphabetical List

Long Name Short Name RGB Triplet
"yellow*" "y* [1 1 0]
"magenta“ “m* [1 0 1]
"cyan* "c" [0 1 1]
"red" rt [1 0 O]
"green” "g- [0 1 O]
"blue* "b* [0 O 1]
"white" "w* [11 1]
"black k" [0 O O]

Example: [0.5 0.5 0.5]

Example: "blue*

"Parent”™ — Parent of axes
axes object

Parent of axes, specified as the comma-separated pair consisting of "Parent and an axes
object in which to draw the point cloud. By default, the point cloud is plotted in the active
axes.

Outputs

h — Scatter series object
scalar

Scatter series object, returned as a scalar. This value is a unique identifier, which you
can use to query and modify the properties of the scatter object after it is created.

See Also
readRGB | readXYZ

Introduced in R2015a

2-130

search

search

Search ROS network for parameter names

Syntax

pnames = search(ptree,searchstr)
[pnames,pvalues] = search(ptree,searchstr)

Description

pnames = search(ptree,searchstr) searches within the parameter tree ptree and
returns the parameter names that contain the string searchstr.

[pnames,pvalues] = search(ptree,searchstr) also returns the parameter
values.

Examples

Search for Parameter Names and Values Using Partial String
[pnames,pvalues] = search(ptree, "gravity”)

pnames =

"/gazebo/gravity_x- "/gazebo/gravity_y-~ "/gazebo/gravity_z*

pvalues =
[0]
[0]
[-9.8000]

Input Arguments

ptree — Parameter tree
ParameterTree object handle

2-131

2 Functions — Alphabetical List

2-132

Parameter tree, specified as a ParameterTree object handle. Create this object using
the rosparam function.

searchstr — ROS parameter search string
string

ROS parameter search string. search returns all parameters that contain this string.

Output Arguments

pnames — Parameter values
cell array of strings

Parameter names, returned as a cell array of strings. These strings match the parameter
names in the ROS master that contain the search string.

pvalues — Parameter values
cell array

Parameter values, returned as a cell array. These values vary, but it should match the
value expected for each parameter name in the array. Supported values are

+ Int32

+ logical
+ double
* string

+ cell array

Currently, Base64—encoded binary data and iso8601 data from ROS are not supported.

See Also

get | rosparam

Introduced in R2015a

select

select

Select subset of messages in rosbag

Syntax

select(bag)
select(bag,Name,Value)

bagsel
bagsel

Description

bagsel = select(bag) returns an object, bagsel, that contains all of the messages in
the BagSelection object, bag

This function does not change the contents of the original BagSelection object. It
returns a new object that contains the specified message selection.

bagsel = select(bag,Name,Value) provides additional options specified

by one or more Name , Value pair arguments. Namemust appear inside single
quotes (" 7). You can specify several name-value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Examples

Create Copy of rosbag

Retrieve a rosbag file.

bag = rosbag(filepath);

Copy the bag using the select function.
bagCopy = select(bag);

Select Message Based on Time

Get the messages from the first full second of the rosbag.

2-133

2 Functions — Alphabetical List

2-134

bagMsgs = select(bagMsgs, "Time", [bagMsgs.StartTime,
bagMsgs.StartTime + 1])

Input Arguments

bag — Message of a rosbag
BagSelection object

All the messages contained within a rosbag, specified as a BagSelection object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "MessageType*®, */geometry_msgs/Point*

"MessageType™ — ROS message type
string | cell array

ROS message type, specified as a string or cell array. Multiple message types can be
specified with a cell array of strings.

*Time" — Start and end times
n-by-2 matrix

Start and end times of the rosbag selection, specified as an n-by-2 vector.

"Topic®™ — ROS topic name
string | cell array

ROS topic name, specified as a string or cell array. Multiple topic names can be specified
with a cell array of strings.

Output Arguments

bagsel — Copy or subset of rosbag messages
BagSelection object

select

Copy or subset of rosbag messages, returned as a BagSelection object

See Also
readMessages | rosbag | timeseries

Introduced in R2015a

2-135

2 Functions — Alphabetical List

send

Publish ROS message to topic

Syntax

send(pub,msg)

Description

send(pub,msg) publishes a message to the topic specified by the publisher, pub. This
message can be received by all subscribers in the ROS network that are subscribed to the
topic specified by pub

Examples

Publish Message Using send

send(pub,msg);

Create, Send and Receive Message

Set up a topic, publisher, and subscriber to share and receive a message.

Create a topic and publisher.

msgtype = rostype.geometry_msgs_Point;
pub = rospublisher(“position®, msgtype);

Create a message.

msg = rosmessage(msgtype);
msg.Y = 2
msg =

ROS Point message with properties:

MessageType: "geometry_msgs/Point”

2-136

send

N < X
oN O

Use showdetails to show the contents of the message

Send the message.
send(pub,msg)
Subscribe to the publisher.
sub = rossubscriber(“position”,msgtype)
sub =
Subscriber with properties:
TopicName: “/position®
MessageType: "geometry_msgs/Point*
LatestMessage: [1x1 Point]

BufferSize: 25
NewMessageFcn: []

Verify that the latest message received is correct.
sub.LatestMessage
ans =

ROS Point message with properties:

MessageType: "geometry_msgs/Point”

Xz 0
Y: 2
Z: 0

Use showdetails to show the contents of the message

Input Arguments

pub — ROS publisher
Publisher object handle

2-137

2 Functions — Alphabetical List

ROS publisher, specified as a Publisher object handle. You can create the object using
rospublisher.

msg — ROS message
Message object handle

ROS message, specified as a Message object handle.

See Also

rospublisher | rostopic

Introduced in R2015a

2-138

sendTransform

sendTransform

Send transformation to ROS network

Syntax

sendTransform(tftree, tf)

Description

sendTransform(tftree, tf) broadcasts a transform or array of transforms, tf, to the
ROS network as a TransformationStamped ROS message.

Examples

Send Transformation to ROS Network
tftree = rostf

tf = gettransform(tftree, "/camera_depth_frame®,"/base link");
sendTransform(tftree, tf)

Input Arguments

tftree — ROS transformation tree
TransformationTree object handle

ROS transformation tree, specified as a TransformationTree object handle. You can
create a transformation tree by calling the rostf function.

tf — Transformations between coordinate frames
TransformStamped object handle | array of object handles

Transformations between coordinate frames, returned as a TransformStamped object
handle or as an array of object handles. Transformations are structured as a 3-D
translation (3-element vector) and a 3-D rotation (quaternion).

2-139

2 Functions — Alphabetical List

See Also

getTransform | transform

Introduced in R2015a

2-140

set

set

Set value of ROS parameter; add new parameter

Syntax

set(ptree,paramname,pvalue)

Description

set(ptree,paramname,pvalue) assigns the value pvalue to the parameter with the
name paramname, which is contained in the parameter tree ptree.

Examples

Set and Get Parameter Value
ptree = rosparam;

set(ptree, "DoubleParam”,1.0)
get(ptree, "DoubleParam™)

ans =

Input Arguments

ptree — Parameter tree
ParameterTree object handle

Parameter tree, specified as a ParameterTree object handle. Create this object using
the rosparam function.

paramname — ROS parameter name
string

2-141

2 Functions — Alphabetical List

ROS parameter name, specified as a string. This string must match the parameter name
exactly.

pvalue — Parameter value
int32 | logical | char | double | cell array

Parameter value, returned as either a int32, logical, double, char, or cell array.
pvalue matches the value of the specifiedparamname and the supported data type in
ParameterTree. Currently, Base64—encoded binary data and 1s08601 data from ROS
are not supported.

See Also

get | rosparam

Introduced in R2015a

2-142

showdetails

showdetails

Display all ROS message contents

Syntax

details = showdetails(msg)

Description

details = showdetails(msg) gets all data contents of message object msg. The
details are stored in details or displayed on the command line.

Examples

Create Message and View Details

Create a message.

msg = rosmessage(rostype.geometry_msgs_Point);
msg-X = 1;
msg.Y = 2;
msg.Z = 3;

View the message details.

showdetails(msg)

X 1
Y - 2
Z - 3

Input Arguments

msg — ROS message
Message object handle

2-143

2 Functions — Alphabetical List

2-144

ROS message, specified as a Message object handle.

Output Arguments

details — Details of ROS message
string

Details of ROS message, returned as a string.

See Also

rosmessage

Introduced in R2015a

tform2axang

tform2axang

Convert homogeneous transformation to axis-angle rotation

Syntax

axang = tform2axang(tform)

Description
axang = tform2axang(tform) converts the rotational component of a homogeneous
transformation, tform, to an axis-angle rotation, axang. The translational components

of tform are ignored. The input homogeneous transformation must be in the premultiply
form for transformations.

Examples

Convert Homogeneous Transformation to Axis-Angle Rotation

tform=[1000; 00 -10; 0100; 000 1]
axang = tform2axang(tform)
axang =

1.0000 0 0 1.5708

Input Arguments

tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation, specified by a 4-by-4-by-n matrix of » homogeneous
transformations. The input homogeneous transformation must be in the premultiply
form for transformations.

Example: [O 0 1 0; 01 00; -1 000; 000 1]

2-145

2 Functions — Alphabetical List

Output Arguments

axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axes, and the last element
defines the rotation angle (in radians).

Example: [1 0 0 pi/2]

See Also

axang2tform

Introduced in R2015a

2-146

tform2eul

tform2eul

Extract Euler angles from homogeneous transformation

Syntax

eul tform2eul (tform)
eul = tform2eul (tform, sequence)

Description

eul = tform2eul (tform) extracts the rotational component from a homogeneous
transformation, tform, and returns it as Euler angles, eul. The translational components
of tform are ignored. The input homogeneous transformation must be in the premultiply
form for transformations. The default order for Euler angle rotations is "ZYX".

eul = tform2eul (tform, sequence) extracts the Euler angles, eul, from a
homogeneous transformation, tform, using the specified rotation sequence, sequence. The
default order for Euler angle rotations is "ZYX".

Examples

Extract Euler Angles from Homogeneous Transformation Matrix

tform =[1000.5; 0-105; 00 -1 -1.2; 00 0 1];
eulzyX = tform2eul (tform)

eulzyXx =
0 0 3.1416

Extract Euler Angles from Homogeneous Transformation Matrix Using ZYZ Rotation

tform = [1 000.5; 0-105; 00 -1-1.2; 00 0 1];
eulzyz = tform2eul (tform, "ZYZ")

eulzyz =

2-147

2 Functions — Alphabetical List

2-148

0 3.1416 3.1416

Input Arguments

tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation, specified by a 4-by-4-by-n matrix of » homogeneous
transformations. The input homogeneous transformation must be in the premultiply
form for transformations.

Example: [O 0 1 0; 01 00; -1 000; 000 1]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ"

Axis rotation sequence for the Euler angles, specified as one of these strings:

+ "ZYX" (default) — The order of rotation angles is z-axis, y-axis, x-axis.

* "ZYZ" — The order of rotation angles is z-axis, y-axis, z-axis.

Output Arguments

eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.

Example: [0 O 1.5708]

See Also

eul2tform

Introduced in R2015a

orm2quat

tform2quat

Extract quaternion from homogeneous transformation

Syntax

quat = tform2quat(tform)

Description

quat = tform2quat(tform) extracts the rotational component from a homogeneous
transformation, tform, and returns it as a quaternion, quat. The translational
components of tform are ignored. The input homogeneous transformation must be in the
premultiply form for transformations.

Examples

Extract Quaternion from Homogeneous Transformation

tform=[1000; 0-100; 00 -10; 000 1];
quat = tform2quat(tform)

guat =

0 1 0 0

Input Arguments

tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation, specified by a 4-by-4-by-n matrix of » homogeneous
transformations. The input homogeneous transformation must be in the premultiply
form for transformations.

Example: [O 0 1 0; 01 00; -1 000; 000 1]

2-149

2 Functions — Alphabetical List

Output Arguments

quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form g = [w x y z], with w as the scalar number.

Example: [0.7071 0.7071 O O]

See Also

quat2tform

Introduced in R2015a

2-150

tform2rotm

tform2rotm

Extract rotation matrix from homogeneous transformation

Syntax

rotm = tform2rotm(tform)

Description

rotm = tform2rotm(tform) extracts the rotational component from a homogeneous
transformation, tform, and returns it as an orthonormal rotation matrix, rotm. The
translational components of tform are ignored. The input homogeneous transformation
must be in the pre-multiply form for transformations. When using the rotation matrix,
premultiply it with the coordinates to be rotated (as opposed to postmultiplying).

Examples

Convert Homogeneous Transformation to Rotation Matrix

tform = [1000; 0-100; 00 -10; 000 1];
rotm = tform2rotm(tform)

rotm =
1 0 0
0 -1 0
0 0 -1

Input Arguments

tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. The input homogeneous transformation must be in the pre-multiply
form for transformations.

2-151

2 Functions — Alphabetical List

Example: [0 0 1 0; 01 00; -1 000; 000 1]

Output Arguments

rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. When using the rotation matrix,
premultiply it with the coordinates to be rotated (as opposed to postmultiplying).

Example: [O O 1; O 1 0; -1 0 0]

See Also

rotm2tform

Introduced in R2015a

2-152

tform?2trvec

tform2trvec

Extract translation vector from homogeneous transformation

Syntax

trvec = tform2trvec(tform)

Description
trvec = tform2trvec(tform) extracts the Cartesian representation of translation
vector, trvec , from a homogeneous transformation, tform. The rotational components of

tform are ignored. The input homogeneous transformation must be in the premultiply
form for transformations.

Examples

Extract Translation Vector from Homogeneous Transformation

tform =[1000.5; 0-105; 00 -1-1.2; 00 0 1];
trvec = tform2trvec(tform)
trvec =

0.5000 5.0000 -1.2000

Input Arguments

tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation, specified by a 4-by-4-by-n matrix of » homogeneous
transformations. The input homogeneous transformation must be in the premultiply
form for transformations.

Example: [O 0 1 0; 01 00; -1 000; 000 1]

2-153

2 Functions — Alphabetical List

Output Arguments

trvec — Cartesian representation of a translation vector
n-by-3 matrix

Cartesian representation of a translation vector, returned as an n-by-3 matrix containing
n translation vectors. Each vector is of the form ¢ = [x y z].

Example: [0.5 6 100]

See Also

trvec2tform

Introduced in R2015a

2-154

timeseries

timeseries

Creates a time series object for selected message properties

Syntax

[ts,cols] = timeseries(bag)
[ts,cols] timeseries(bag,property)
[ts,cols] = timeseries(bag,property, ...,propertyN)

Description

[ts,cols] = timeseries(bag) creates a time series for all numeric and scalar
message properties. The function evaluates each message in the current BagSelection
object, bag, as ts. The cols output argument stores property names as a cell array of
strings.

The returned time series object is memory-efficient because it stores only particular
message properties instead of whole messages.

[ts,cols] = timeseries(bag,property) creates a time series for a specific
message property, property. Property names can also be nested, for example,
"Pose.Pose.Position.X" for the x-axis position of a robot.

[ts,cols] = timeseries(bag,property, ...,propertyN) creates a time series

for a range specific message properties. Each property is a different column in the time
series object.

2-155

2 Functions — Alphabetical List

2-156

Examples

Create Time Series from Entire Bag Selection

ts = timeseries(bagMsgs);

Create Time Series with Single Property

ts = timeseries(bagMsgs, "Pose.Pose.Position.X");

Create Time Series with Multiple Properties

ts = timeseries(bagMsgs, "Twist.Twist.Angular.X", ...
"Twist.Twist.Angular.Y", "Twist.Twist.Angular.zZ")

Input Arguments

bag — Bag selection
BagSelection object handle

Bag selection, specified as a BagSelection object handle. You can get a bag selection by
calling rosbag.

property — Property names
string

Property names, specified as a string. Multiple properties can be specified. Each property
name is a separate input and represents a different column in the time series object.

Output Arguments

ts — Time series
Time object handle

Time series, returned as a Time object handle.

cols — List of property names
cell array of strings

List of property names, returned as a cell array of strings.

timeseries

More About

“Time Series Basics”

See Also

readMessages | rosbag | select

Introduced in R2015a

2-157

2 Functions — Alphabetical List

2-158

transform

Transform message entities into target coordinate frame

Syntax

tfentity = transform(tftree,targetframe,entity)

Description

tfentity = transform(tftree, targetframe,entity) retrieves the
transformation between targetframe and entity and applies it to entity, a ROS message
of a specific type. tftree is the full transformation tree containing known transformations
between entities. If the transformation from entity to targetframe does not exist,
MATLAB thows an error.

Examples

Transform PointStamped Message

Define a point in the coordinate frame of a camera.

pt = rosmessage("geometry msgs/PointStamped®);
pt.Header.Frameld = "/camera_depth_frame";

pt.Point.X = 3;
pt.Point.Y = 1.5;
pt.Point.Z = 0.2;

Transform the point to the base_link frame.

tfpt = transform(tftree, "/base_link", pt)

Input Arguments

tftree — ROS transformation tree
TransformationTree object handle

transform

ROS transformation tree, specified as a TransformationTree object handle. You can
create a transformation tree by calling the rostf function.

targetframe — Target coordinate frame
string

Target coordinate frame that entity transforms into, specified as a string. You can view
the available frames for transformation calling tFtree.AvailableFrames.

entity — Initial message entity
Message object handle

Initial message entity, specified as a Message object handle.
Supported messages are:

+ geometry_msgs/PointStamped

+ geometry_msgs/PoseStamped

+ geometry_msgs/PointCloud2Stamped
+ geometry_msgs/QuaternionStamped

+ geometry_msgs/Vector3Stamped

Output Arguments

tfentity — Transformed entity
Message object handle

Transformed entity, returned as a Message object handle.

See Also

getTransform | waitforTransform

Introduced in R2015a

2-159

2 Functions — Alphabetical List

2-160

trvec2iform

Convert translation vector to homogeneous transformation

Syntax

tform = trvec2tform(trvec)

Description

tform = trvec2tform(trvec) converts the Cartesian representation of a translation
vector, trvec, to the corresponding homogeneous transformation, tform. When using the
transformation matrix, premultiply it with the coordinates to be transformed (as opposed
to postmultiplying).

Examples
Convert Translation Vector to Homogeneous Transformation
trvec = [0.5 6 100];
tform = trvec2tform(trvec)
tform =
1.0000 0 0 0.5000
0 1.0000 0 6.0000
0 0 1.0000 100.0000
0 0 0 1.0000

Input Arguments

trvec — Cartesian representation of a translation vector
n-by-3 matrix

Cartesian representation of a translation vector, specified as an n-by-3 matrix containing
n translation vectors. Each vector is of the form ¢t =[x y z].

trvec2tform

Example: [0.5 6 100]

Output Arguments

tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, returned as a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to
be rotated (as opposed to postmultiplying).

Example: [0 0 1 0; 01 00; -1 000; 000 1]

See Also

tform2trvec

Introduced in R2015a

2-161

2 Functions — Alphabetical List

2-162

waitforTransform

Wait until a transformation is available

Syntax

waitforTransform(tftree, targetframe, sourceframe)
waitforTransform(tftree, targetframe,sourceframe,timeout)

Description

waitforTransform(tftree, targetframe,sourceframe) waits until the
transformation between targetframe and sourceframe is available in the transformation
tree, tftree. This functions disables the command prompt until a transformation becomes
available on the ROS network.

waitforTransform(tftree,targetframe,sourceframe, timeout) specifies a

timeout period in seconds. If the transformation does not become available, MATLAB
displays an error, but continues running the current program.

Examples

Wait for Transform

waitforTransform(tftree, "/camera_depth_frame®", "/base_link");

Specify Timeout of Five Seconds to Wait for Transform

waitforTransform(tftree, " /camera_depth_frame®, "/base_link",5);

Input Arguments

tftree — ROS transformation free
TransformationTree object handle

waitforTransform

ROS transformation tree, specified as a TransformationTree object handle. You can
create a transformation tree by calling the rostf function.

targetframe — Target coordinate frame
string

Target coordinate frame, specified as a string. You can view the available frames for
transformation by calling tFtree.AvailableFrames.

sourceframe — Initial coordinate frame
string

Initial coordinate frame, specified as a string. You can view the available frames for
transformation using tftree.AvailableFrames.

timeout — Timeout period
scalar in seconds

Timeout period, specified as a scalar in seconds. If the transformation does not become
available, MATLAB displays an error, but continues running the current program.

See Also

getTransform | receive | transform

Introduced in R2015a

2-163

2 Functions — Alphabetical List

writeBinaryOccupancyGrid

Write values from grid to ROS message

Syntax

writeBinaryOccupancyGrid(msg,map)

Description

writeBinaryOccupancyGrid(msg,map) writes occupancy values and other
information to the ROS message, msg, from the binary occupancy grid, map.

Examples

Write Binary occupancy Grid Information to ROS Message

map = robotics.BinaryOccupancyGrid(randi([0,1], 10));
msg = rosmessage("nav_msgs/OccupancyGrid®);
writeBinaryOccupancyGrid(msg, map);

Input Arguments

map — Binary occupancy grid
BinaryOccupancyGrid object handle

Binary occupancy grid, specified as a BinaryOccupancyGrid object handle. map is
converted to a "nav_msgs/OccupancyGrid” message on the ROS network. map is
an object with a grid of binary values, where 1 indicates an occupied location and O

indications an unoccupied location.

msg — "nav_msgs/OccupancyGrid” ROS message
OccupancyGrid object handle

"nav_msgs/0OccupancyGrid®” ROS message, specified as a OccupancyGrid object
handle.

2-164

writeBinaryOccupancyGrid

See Also

robotics.BinaryOccupancyGrid | readBinaryOccupancyGrid

Introduced in R2015a

2-165

2 Functions — Alphabetical List

2-166

writelmage

Write MATLAB image to ROS image message

Syntax

writelmage(msg, img)
writelmage(msg, img,alpha)

Description

writelmage(msg, img) converts the MATLAB image, img, to a message object and
stores the ROS compatible image data in the message object, msg. The message must be
a "sensor_msgs/Image” message. "sensor_msgs/CompressedImage” messages are
not supported.

writelmage(msg, img,alpha) converts the MATLAB image, img to a message object.
If the image encoding supports an alpha channel (rgba or bgra family), specify this
alpha channel in alpha. Alternatively, the input image can store the alpha channel as its
fourth channel.

Examples

Write Image to Message

msg = rosmessage("sensor_msgs/Image®)
writelmage(msg, img);

Write Message Using Alpha Channel

writelmage(msg, img,alpha);

Input Arguments

msg — ROS image message
Image object handle

writelmage

"sensor_msgs/Image® ROS image message, specified as an Image object handle.
"sensor_msgs/Image” image messages are not supported.

img — Image
grayscale image matrix | RBG image matrix | m-by-n-by-3 array

Image, specified as a matrix representing a grayscale or RGB image or as am-by-n-by-3
array, depending on the sensor image.

alpha — Alpha channel

uint8 grayscale image

Alpha channel, specified as a uint8 grayscale image. Alpha must be the same size and
data type as img.

More About
Tips

You must specify encoding of the input image in the "Encoding” property of the image
message. If you do not specify the image encoding before calling the function, the default
encoding, rgb8, is used (3-channel RGB image with uint8 values).

All encoding types supported for the read Image are also supported in this function. For
more information on supported encoding types and their representations in MATLAB,
see readlmage.

Bayer-encoded images (bayer_rggb8, bayer_bggr8, bayer gbrg8, bayer_grbg8 and
their 16-bit equivalents) must be given as 8-bit or 16-bit single-channel images or they do
not encode.

See Also

readlmage

Introduced in R2015a

2-167

Methods — Alphabetical List

3 Methods — Alphabetical List

3-2

copy

Class: robotics.BinaryOccupancyGrid
Package: robotics

Copy array of handle objects

Syntax

b = copy(a)

Description

b = copy(@) copies each element in the array of handles, a, to the new array of
handles, b.

The copy method does not copy dependent properties. MATLAB does not call copy
recursively on any handles contained in property values. MATLAB does not call the class
constructor or property set methods during the copy operation.

b has the same number of elements and is the same size and class ofa. b is the same
class as a. If a is empty, b is also empty. If a is heterogeneous, b is also heterogeneous.
If a contains deleted handles, then copy creates deleted handles of the same class in b.
Dynamic properties and listeners associated with objects in a are not copied to objects in
a.

copy is a sealed and public method in class matlab_mixin.Copyable.

Input Arguments

a — Oject array
handle

Object array, specified as a handle.

copy

Output Arguments

b — Object array containing copies of the objects in a
handle

Object array containing copies of the object in a, specified as a handle.

See Also

robotics.BinaryOccupancyGrid

Introduced in R2015a

3-3

3 Methods — Alphabetical List

getOccupancy

Class: robotics.BinaryOccupancyGrid
Package: robotics

Get occupancy value for one or more positions

Syntax

occval = getOccupancy(map,Xy)
occval getOccupancy(map,ij, “grid®)

Description

occval = getOccupancy(map,Xy) returns an array of occupancy values for an input
array of world coordinates, xy. Each row of xy is a point in the world, represented as

an [x y] coordinate pair. occval is the same length as xy and a single column array. An
occupied location is represented as true (1), and a free location is represented as false

©).

occval = getOccupancy(map,ij, "grid") returns an array of occupancy values
based on a [rows cols]input array of grid positions, ij.

Input Arguments

map — Map representation
BinaryOccupancyGrid object

Map representation, specified as a robotics.BinaryOccupancyGrid object. This
object represents the environment of the robot. The object contains a matrix grid with
binary values indicating obstacles as true (1) and free locations as false (0).

xy — World coordinates
n-by-2 vertical array

World coordiantes, specified as an n-by-2 vertical array of [X y] pairs, where n is the
number of world coordinates.

3-4

getOccupancy

Data Types: double

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols]
format, where n is the number of grid positions.

Data Types: double

Output Arguments

occval — Occupancy values
n-by-1 vertical array

Occupancy values of the same length as either xy or ij, returned as an n-by-1 vertical
array, where n is the same n in either xy or ij.

See Also

robotics.BinaryOccupancyGrid |
robotics.BinaryOccupancyGrid.setOccupancy

Introduced in R2015a

3-5

3 Methods — Alphabetical List

3-6

grid2world

Class: robotics.BinaryOccupancyGrid
Package: robotics

Convert grid indices to world coordinates

Syntax

xy = grid2world(map,ij)

Description

xy = grid2world(map, ij) converts a [row col] array of grid indices, ij, to an array
of world coordinates, xy.

Input Arguments

map — Map representation
BinaryOccupancyGrid object

Map representation, specified as a robotics.BinaryOccupancyGrid object. This
object represents the environment of the robot. The object contains a matrix grid with
binary values indicating obstacles as true (1) and free locations as false (0).

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [1 J] pairs in [rows cols]
format, where n is the number of grid positions.

Output Arguments

xy — World coordinates
n-by-2 vertical array

grid2wor|c|

World coordiantes, specified as an n-by-2 vertical array of [X y] pairs, where n is the
number of world coordinates.

See Also

robotics.BinaryOccupancyGrid |
robotics.BinaryOccupancyGrid.world2grid

Introduced in R2015a

3-7

3 Methods — Alphabetical List

3-8

inflate

Class: robotics.BinaryOccupancyGrid
Package: robotics

Inflate each occupied grid location

Syntax

inflate(map, radius)
inflate(map,gridradius, "grid")

Description

inflate(map, radius) inflates each occupied position of the map by the radius given in
meters. radius is rounded up to the nearest cell equivalent based on the resolution of the
map. Every cell within the radius is set to true (1).

inflate(map,gridradius, "grid") inflates each occupied position by the radius
given in number of cells.

Input Arguments

map — Map representation
BinaryOccupancyGrid object

Map representation, specified as a robotics.BinaryOccupancyGrid object. This
object represents the environment of the robot. The object contains a matrix grid with
binary values indicating obstacles as true (1) and free locations as false (0).

radius — Dimension the defines how much to inflate occupied locations
scalar

Dimension that defines how much to inflate occupied locations, specified as a scalar.
radius is rounded up to the nearest cell value.

Data Types: double

inflate

gridradius — Dimension the defines how much to inflate occupied locations
positive scalar

Dimension that defines how much to inflate occupied locations, specified as a positive
scalar. gridradius is the number of cells to inflate the occupied locations.

Data Types: double

See Also

robotics.BinaryOccupancyGrid |
robotics.BinaryOccupancyGrid.setOccupancy

Introduced in R2015a

3-9

3 Methods — Alphabetical List

setOccupancy

Class: robotics.BinaryOccupancyGrid
Package: robotics

Set occupancy value for one or more positions

Syntax

setOccupancy(map,xy,occval)
setOccupancy(map, ij,occval,“grid®)

Description

setOccupancy(map,xy,occval) assigns occupancy values, occval, to the input array
of world coordinates, xy in the occupancy grid, map. Each row of the array, xy, is a point
in the world and is represented as an [x y] coordinate pair. occval is either a scalar or

a single column array of the same length as xy . An occupied location is represented as
true (1), and a free location is represented as False (0).

setOccupancy(map, ij,occval, "grid") assigns occupancy values, occval, to the
input array of grid indices, ij, as [rows cols].

Input Arguments

map — Map representation
BinaryOccupancyGrid object

Map representation, specified as a robotics.BinaryOccupancyGrid object. This
object represents the environment of the robot. The object contains a matrix grid with
binary values indicating obstacles as true (1) and free locations as false (0).

xy — World coordinates
n-by-2 vertical array

World coordiantes, specified as an n-by-2 vertical array of [X y] pairs, where n is the
number of world coordinates.

3-10

setOccupancy

Data Types: double

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols]
format, where n is the number of grid positions.

Data Types: double

occval — Occupancy values
n-by-1 vertical array

Occupancy values of the same length as either xy or ij, returned as an n-by-1 vertical
array, where n is the same n in either xy or 1j.

Examples

Set Occupancy Values

Set the occupancy of grid locations using setOccupancy.
Initialize an occupancy grid object using BinaryOccupancyGrid.
map = robotics.BinaryOccupancyGrid(10,10);

Set the occupancy of a specific location using setOccupancy.
setOccupancy(map, [8 8], 1);

Set the occupancy of an array of locations.

[x,y] = meshgrid(2:5);
setOccupancy(map, [x(2) vy(:)]1.1):

See Also

robotics.BinaryOccupancyGrid |
robotics.BinaryOccupancyGrid.getOccupancy

Introduced in R2015a

3-11

3 Methods — Alphabetical List

3-12

show

Class: robotics.BinaryOccupancyGrid
Package: robotics

Show occupancy grid values

Syntax

show(map)
show(map, "grid®)

show(, "Parent” ,parent)

)

h = show(map,

Description

show(map) displays the binary occupancy grid map in the current axes, with the axes
labels representing the world coordinates.

show(map, "grid") displays the binary occupancy grid map in the current axes, with
the axes labels representing the grid coordinates.

show(, "Parent” ,parent) sets the specified axes handle parent to the axes, using
any of the arguments from previous syntaxes.

h = show(map,) returns the figure object handle created by show.

Input Arguments

map — Map representation
BinaryOccupancyGrid object

Map representation, specified as a robotics.BinaryOccupancyGrid object. This
object represents the environment of the robot. The object contains a matrix grid with
binary values indicating obstacles as true (1) and free locations as false (0).

show

parent — Axes properties
handle

Axes properties, specified as a handle.

See Also

robotics.BinaryOccupancyGrid

Introduced in R2015a

3-13

3 Methods — Alphabetical List

3-14

world2grid

Class: robotics.BinaryOccupancyGrid
Package: robotics

Convert world coordinates to grid indices

Syntax

ij = world2grid(map,xy)

Description

ij = world2grid(map,xy) converts an array of world coordinates, xy, to a [rows
cols] array of grid indices, ij.

Input Arguments

map — Map representation
BinaryOccupancyGrid object

Map representation, specified as a robotics.BinaryOccupancyGrid object. This
object represents the environment of the robot. The object contains a matrix grid with
binary values indicating obstacles as true (1) and free locations as false (0).

xy — World coordinates
n-by-2 vertical array

World coordiantes, specified as an n-by-2 vertical array of [X y] pairs, where n is the
number of world coordinates.

Output Arguments

ij — Grid positions
n-by-2 vertical array

world2grid

Grid positions, specified as an n-by-2 vertical array of [j] pairs in [rows cols]
format, where n is the number of grid positions.

See Also

robotics.BinaryOccupancyGrid |
robotics.BinaryOccupancyGrid.grid2world

Introduced in R2015a

3-15

3 Methods — Alphabetical List

3-16

findpath

Class: robotics. PRM
Package: robotics

Find path between start and goal points on roadmap

Syntax

xy = Findpath(prm,start,goal)

Description

xy = Findpath(prm,start,goal) finds an obstacle-free path between start and goal
locations within prm, a roadmap object that contains a network of connected points.

If any properties of prm change, or if the roadmap is not created, update is called.

Input Arguments

prm — Roadmap path planner
PRM object

Roadmap path planner, specified as a robotics.PRM object.

start — Start location of path
2-by-1 vector

Start location of path, specified as a 2-by-1 vector representing an [X y] pair.

Example: [0 0]

goal — Final location of path
2-by-1 vector

Final location of path, specified as a 2-by-1 vector representing an [x y] pair.

Example: [10 10]

findpath

Output Arguments

Xy — Waypoints for a path between start and goal
2-by-n column vector

Waypoints for a path between start and goal, specified as a 2-by-n column vector of [x

y] pairs, where n is the number of waypoints. These pairs represent the solved path from
the start and goal locations, given the roadmap from the prm input object.

See Also

robotics.PRM | robotics.PRM.show | robotics.PRM.update

Introduced in R2015a

3-17

3 Methods — Alphabetical List

3-18

show

Class: robotics. PRM
Package: robotics

Show map, roadmap, and path

Syntax

show(prm)
show(prm,Name,Value)

Description

show(prm) shows the map and the roadmap, specified as prm in a figure window. If no
roadmap exists, update is called. If a path is computed before calling show, the path is
also plotted on the figure.

show(prm,Name,Value) sets the specified Value to the property Name.

Input Arguments

prm — Roadmap path planner
PRM object

Roadmap path planner, specified as a robotics.PRM object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"Parent” — Axes handle
handle

show

Axes handle that specifies the parent of the figure object created by show, specified as the
comma-separated pair consisting of 'Parent' and a handle.

"Map"™ — Map display option
'on' (default) | 'off’

Map display option, specified as the comma-separated pair consisting of *"Map® and
either 'on' or 'off'.

"Roadmap” — Roadmap display option
‘on’ (default) | 'off'

Roadmap display option, specified as the comma-separated pair consisting of *Roadmap*
and either 'on' or 'off".

"Path® — Path display option
‘on’ (default) | 'off'

A string to turn on or off the display of the path, whose value is 'on' or 'off".

See Also
[

Related Examples
. “Path Following for a Differential Drive Robot”

Introduced in R2015a

3-19

3 Methods — Alphabetical List

3-20

update

Class: robotics. PRM
Package: robotics

Create or update roadmap

Syntax

update(prm)

Description
update(prm) creates a roadmap if called for the first time after creating the PRM object,
prm. Subsequent calls of update recreate the roadmap by resampling the map. update

creates the new roadmap using the Map, NumNodes, and ConnectionDistance property
values specified in prm.

Input Arguments

prm — Roadmap path planner
PRM object

Roadmap path planner, specified as a robotics.PRM object.

See Also
robotics.PRM | robotics.PRM.findpath | robotics.PRM.show

Introduced in R2015a

clone

clone

Class: robotics.PurePursuit
Package: robotics

Create PurePursuit object with same property values

Syntax

copy = clone(controller)

Description
copy = clone(controller) creates another instance of the System object, controller,

with the same property values. The clone method creates a new unlocked object without
initialized states.

Input Arguments

controller — Pure pursuit controller
PurePursuit object

Pure pursuit controller, specified as a PurePursuit object.

Output Arguments

copy — Pure pursuit controller
PurePursuit object

Copy of pure pursuit controller, returned as a PurePursuit object.

See Also

robotics.PurePursuit

Introduced in R2015a

3-21

3 Methods — Alphabetical List

3-22

isLocked

Class: robotics.PurePursuit
Package: robotics

Check locked states (logical)

Syntax

status = isLocked(controller)

Description

status = isLocked(controller) returns a logical value, status, which indicates
whether input attributes and nontunable properties are locked for the object, controller.
For the PurePursuit class, the only nontunable property is Waypoints.

Input Arguments

controller — Pure pursuit controller
PurePursuit object

Pure pursuit controller, specified as a PurePursuit object.

Output Arguments

status — Locked status of object
Boolean

Locked status of the object input attributes and nontunable properties, returned as a
Boolean.

See Also

robotics.PurePursuit | robotics.PurePursuit.release |
robotics.PurePursuit.step

isLocked

Introduced in R2015a

3-23

3 Methods — Alphabetical List

3-24

release

Class: robotics.PurePursuit
Package: robotics

Allow property value changes

Syntax

release(controller)

Description

release(controller) resets the internal properties of the control ler object and
unlocks the object so that you can modify nontunable properties. For the PurePursuit
class, the only nontunable property is Waypoints. After release is called, you can
change the properties and input characteristics of controller.

Input Arguments

controller — Pure pursuit controller
PurePursuit object

Pure pursuit controller, specified as a PurePursuit object.

See Also

robotics.PurePursuit | robotics.PurePursuit.isLocked |
robotics.PurePursuit.step

Introduced in R2015a

reset

reset

Class: robotics.PurePursuit
Package: robotics

Reset internal states to default

Syntax

reset(controller)

Description
reset(control ler) resets the internal system properties of the controller object. All

properties specific to the PurePursuit object are kept the same and the locked status of
the object does not change.

Input Arguments

controller — Pure pursuit controller
PurePursuit object

Pure pursuit controller, specified as a PurePursuit object.

See Also

robotics.PurePursuit | robotics.PurePursuit.release

Introduced in R2015a

3-25

3 Methods — Alphabetical List

3-26

step

Class: robotics.PurePursuit
Package: robotics

Compute linear and angular velocity control commands

Syntax

[vel, angvel] = step(controller,pose)

Description

[vel, angvel] step(controller,pose) processes the robot’s position and
orientation, pose, as [X y theta], and outputs the linear velocity, vel, and angular
velocity, angvel, based on the specified controller .

Input Arguments

controller — Pure pursuit controller
PurePursuit object

Pure pursuit controller, specified as a PurePursuit object.

pose — Position and orientation of robot
3-by-1 vector in the form [X y theta]

Position and orientation of robot, specified as a 3-by-1 vector in the form [x y theta].
The robot’s pose is an x and y position with angular orientation (in radians) measured
from the x-axis.

Output Arguments

vel — Linear velocity
scalar in meters per second

step

Linear velocity, specifed as a scalar in meters per second.

Data Types: double

angvel — Angular velocity
scalar in radians per second

Angular velocity, specified as a scalar in radians per second.

Data Types: double

See Also

robotics.PurePursuit

Introduced in R2015a

3-27

Blocks — Alphabetical List

Blank Message
Publish
Subscribe

4 Blocks — Alphabetical List

4-2

Blank Message

Create blank message using specified message type

Library

Robotics System Toolbox

robotlib

ROS5

Blank Message TN

Description

The Blank Message block creates a Simulink® nonvirtual bus corresponding to the
selected ROS message type. On each sample hit, the block emits a blank or “zero” signal
for the designated message type. All elements of the bus are initialized to 0, and the
length of the variable-length arrays are initialized to 0 as well.

Blank Message

Dialog Box

e

& Source Block Parameters: Blank Message @
ROS Blank Message (mask) (link)

Create a blank message with the specified message type.

The "Msg" block output is a blank ROS message (bus signal). Use a
Bus Assignment block to modify specific fields in the bus signal.

The bus signal is initialized to zero value (ground).

Parameters

Message type: |geometry_msgs/FPoint Select ==

Sample time: inf

0K]| Cancel || Help Apply

Message type

Message type for the blank message. Use the Select button to select from a full list

of supported ROS messages. You can also use the rostype function in MATLAB to
view the list of supported ROS messages.

Sample time

Interval between times that the Blank Message block output can change during
simulation.

Default: inf

This default value indicates that the block output can never change. Using this value

speeds simulation and code generation by eliminating the need to recompute the
block output.

4-3

4 Blocks — Alphabetical List

4-4

For more information, see “ Specify Sample Time”.

See Also
Publish | Subscribe

Related Examples

. “Virtual and Nonvirtual Buses”

Introduced in R2015a

Publish

Publish

Send messages to ROS network

Library
Robotics System Toolbox

robotlib

ROS
[
Description jmy_topic

Publish

The Publish block takes in as its input a Simulink nonvirtual bus that corresponds to the
specified ROS message type and publishes it to the ROS network. It uses the node of the
Simulink model to create a ROS publisher for a specific topic. This node is created when
the model runs and is deleted when the model terminates. If the model does not have a
node, the block creates one.

On each sample hit, the block converts the Msg input from a Simulink bus signal to a
ROS message and publishes it. The block does not distinguish whether the input is a
new message but merely publishes it on every sample hit. For simulation, this input is a
MATLAB ROS message and in code generation, it is a C++ ROS message.

4-5

4 Blocks — Alphabetical List

Dialog Box

4 Sink Block Parameters: Publish ==
ROS Publish (mask) (link)

Send messages to a ROS network.
The "Msqg" block input accepts a ROS message (bus signal).

To select from a list of available topics, set "Topic source" parameter
to "Select from ROS network" and use the "Select ==" button. The
message type for the selected topic is set automatically.

To enter @ custom topic, set "Topic source" to "Specify your own". Use
the "Topic" parameter to specify the name, and the "Select =="
button to select the message type.

Configure network addresses

Main Code Generation |

Topic source: [Select from ROS network ']
Topic: | fmy_topic

Message type: |geometry_msgs/Point

OK H Cancel H Help H Apply

Topic source
This selector determines where you get the topic name that you want to subscribe to.

+ Select from ROS network — Use the Select button to select a topic. You must
be connected to a ROS network.

4-6

Publish

* Specify your own — Enter a topic name in Topic. You must match a topic
name exactly.

Topic

The ROS topic to publish to, specified as a string. When Topic source is set to
Select from ROS network, use theSelect button to select from the ROS network.
You must be connected to a ROS network to get a list of topics. Otherwise, specify the
topic you want.

Topic name strings must follow the rules of ROS topic names. Valid names have the
following characteristics:

+ The first character is an alpha character ([a-z | A-Z]), tilde (~), or forward slash (/).

* Subsequent characters are alphanumeric ([a-z| A-Z]), underscores(_), or forward
slashes (/).

Message type

Message type for the Topic specified. If you select a topic from the ROS network, the
message type is selected for you. Otherwise, use Select button to select from a full
list of supported ROS messages. You can also use the rostype function in MATLAB
to view the list of messages.

Tips

You can also set the addresses for the ROS master and node host by clicking the
Configure network addresses link in the dialog box.

See Also
Blank Message | Subscribe

Related Examples

. “Virtual and Nonvirtual Buses”

Introduced in R2015a

4-7

4 Blocks — Alphabetical List

4-8

Subscribe

Receive messages from ROS network

Library
Robotics System Toolbox

robotlib

ROZ
Ishew ¥
Subscribe

a

[Msg

fmy_topic

Description

Subscribe creates a Simulink nonvirtual bus that corresponds to the specified ROS
message type. The block uses the node of the Simulink model to create a ROS subscriber
for a specific topic. This node is created when the model runs and is deleted when the
model terminates. If the model does not have a node, the block creates one.

On each sample hit, the block checks if a new message available on the specific topic. If a
new message is available, the block retrieves the message and converts it to a Simulink
bus signal. The Msg outputs this new message. If a new message is not available, Msg
outputs the last received ROS message. If there has not been a received message since
the start of the simulation, Msg outputs a blank message.

Subscribe

Dialog Box

P

"L Source Block Parameters: Subscribe @
ROS Subscribe (mask) (link)

Receive messages from ROS network.

The "Msg" block output is @ ROS message (bus signal). Use a Bus Selector
block to extract signals you want to work with. The "Ishew" block output is a
boolean indicating whether a message was received during the previous
time step. When "IsNew" is true, "Msg" holds the newly-received message.
When "IsMew" is false, "Msg" holds the last received message.

To select from a list of available topics, set "Topic source" parameter to
"Select from ROS network" and use the "Select >>" button. The message
type for the selected topic is set automatically.

To enter a custom topic, set "Topic source” to "Specify your own". Use the
"Topic" parameter to specify the name, and the "Select =>" button to select
the message type.

Configure network addresses

Main Code Generation |

Topic source: [Select from ROS network *]

Topic: | /my_topic

Message type: | geometry_msgs/Point

Sample time: -1

Ok][Cancel H Help Apply

Topic source

This selector determines where you get the topic name that you want to subscribe to.

4-9

4 Blocks — Alphabetical List

+ Select from ROS network — Use the Select button to select a topic. You must
be connected to a ROS network.

+ Specify your own — Enter a topic name in Topic. You must match a topic
name exactly.
Topic

The ROS topic to publish to, specified as a string. When Topic source is set to
Select from ROS network, use theSelect button to select from the ROS network.
You must be connected to a ROS network to get a list of topics. Otherwise, specify the
topic you want.

Topic name strings must follow the rules of ROS topic names. Valid names have the
following characteristics:
* The first character is an alpha character ([a-z | A-Z]), tilde (~), or forward slash (/).
* Subsequent characters are alphanumeric ([a-z| A-Z]), underscores(_), or forward
slashes (/).
Message type

Message type for the Topic specified. If you select a topic from the ROS network, the
message type is selected for you. Otherwise, use Select button to select from a full
list of supported ROS messages. You can also use the rostype function in MATLAB
to view the list of messages.

Sample time

Interval between times that the Subscribe block output can change during
simulation. In simulation, the sample time follows simulation time and not actual
wall-block time.

Default: -1
This default value indicates that the block sample time is inherited.
For more information about the inherited sample time type, see “ Specify Sample
Time”.
Tips

You can also Configure Network Addresses by clicking the link in the dialog box. This
allows you to set the addresses for the 'ROS Master' and 'Node Host'.

4-10

Subscribe

See Also
Blank Message | Publish

Related Examples

“Virtual and Nonvirtual Buses”

Introduced in R2015a

4-11

